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We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a
model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is
a simplified version of a recently proposed ddeB. Mannevilleet al,, Phys. Rev. B64, 021908(2001)] for
nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps
incorporated in phospholipid egg phosphatidyl cholig®Q bilayers. The pump-membrane system is mod-
eled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in
which one component, representing active pumps, is described in terms of force dipoles displaced with respect
to the bilayer midpoint. We first discuss the case in which such pumps are rendacgte computing the
mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby
wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two compo-
nents, in which the effects of curvature-concentration coupling are significant, above the threshold for phase
separation. We then discuss the fluctuations and mode structure in the steady state of active two-component
membranes near a repulsive wall. We find that proximity to the sratbothensnembrane height fluctuations
in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless mem-
branes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration
coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which ob-
tained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played
by such couplings may need to be reevaluated.
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[. INTRODUCTION lends such membranes a nonvanish@though smajlshear
modulus[22]. Another aspect, specific to the biological con-
Amphiphilic molecules, in polar solvents such as water,text, is the presence of nonequilibrium driving forces: An
form symmetric bilayer membrane phases at sufficient conimportant class of transmembrane proteins are the “ion
centration[1—4]. Such membranes are typicaflyid in na-  pumps,” molecules which consume energy derived from ad-
ture, with short-ranged positional order, although more comenosine triphosphate hydrolysis, electrochemical gradients,
plex forms of ordering are possib[&—7]. The equilibrium  or light, and undergo conformational changes. Such pumps
conformations of such single-component membranes armaintain electro-osmotic potential gradients across the cell
governed by the energy cost for bending the bilayer, promembrane by controlling the flow of ions such a$ kind
vided the surface tension can be neglected, as is the caseN&". Since energy must be supplied externally, the driving
the membrane is self-assembled8,9. Our understanding of the pump is a process that occurs out of thermal equilib-
of the static and dynamic properties of such single-rium. Thus, the situation of active pumps diffusing in a fluid
component membrane systems in equilibrium is now fairlymembrane matrix is an intrinsically nonequilibrium problem
detailed[3,10-11. whose behavior represents a class of nonequilibrium steady
More complex multicomponent membranes have alsstates.
been synthesized and studig@18—20. Such membranes The appropriate statistical description of active or
are especially important in the biological context, since cell‘driven” biological membrane systems has attracted recent
membranes are often usefully idealized as a bildlygl mo-  experimental and theoretical attenti28]. It has been real-
saiccomprised of over a hundred different types of lipid andized that nonequilibrium behavior may underlie aspects of
protein constituent§21,22. Biological membranes, how- biomembrane dynamid®4,25, previously attributed purely
ever, often have additional complicating features: An underto equilibrium thermal fluctuations, such as the “flicker”
lying network of cross-linked proteins anchored to the bi-phenomenon in erythrocytd26]. Recent micropipette ex-
layer and associated with the cell cytoskeleton typicallyperiments on light-activated bacteriorhodopsin pumps incor-
porated in phospholipiEPQ bilayers find that area fluctua-
tions in such active membrane systems can be

*Email address: sumithra@imsc.ernet.in phenomenologically described in terms of an effective tem-
"Email address: menon@imsc.ernet.in perature, which exceeds the true physical temperature by up
*Email address: sunil@physics.iitm.ac.in to a factor of 2[27,28. In these systems, the transition be-
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tween active and inactive states can be eagilyd revers-
ibly) tuned, providing a remarkable window into the dynam-
ics of steady states away from equilibrij28—31].

Analytical calculations which deal with the complex na-
ture of a typical biological membrarie toto are difficult, if FIG. 1. A schematic diagram of the two kinds of proteins, rep-
not impossible. We may, however, hope to gain useful insightesented as up and down triangles. These affect the local curvature
by working with simpler models. We idealize a typical bio- of the membrane by bending it towards or away from the local
logical membrane here as composed of principallg dif- ~ normal. The bilayer midplane lies at=0.
ferent types of molecular constituents, the lipids, which con- : : )
stitute the bulk of the bilayer membrane, and the proteinsnormal' We label the;e proteins #sand — fqr convenience,
which diffuse freely on the membrane surface. Such simpl he relatively small flip-flop rate for protein transfer across

lipid—pump protein systems can be reconstituted and studiegcar\ézz gaé?faﬂgayri;fgzgr:; tp;teﬂ;ﬁ;zlsat_)rﬂz 3?;22?2%29
in vitro, as in the micropipette experiments referred to above ! ! ! : !

: : fween the local densities of and — proteins defines a
Our results should apply, most directly, to such eXpe”mentS"signed” protein density fieldy. To describe the incorpora-

The question we address in this paper is the following:

How are the fluctuations of such a two-component memton of such asymmetric proteins into the lipid bilayer, we

i i ! -
brane[32], both in equilibrium and out of equilibrium, af- model the protein as arigid rod of lengthi +w'. The pro

fected by the presence of a nearby repulsive wall? Fluctua€in is taken to situate itself asymmetrically with respect to

tions of a single-component membrane bounded on one si&@e bilayer m,dpomt; a se.ct|owT.of the prgte|ln .||es on one

by a repulsive wall have been considered in earlier WorkSlde of_the b||_ayer m_ldpom_t while a section” lies on the .
[3,33]. More recently, a similar problem for active mem- other S|_de. This relatl_vely S|mple_model of the asymmetry is
branes has been studied in an influential paper by Prost arfPvenient for analytic computation.

co-workers[29,30, who suggest that steady-state fluctua- To lowest or_der, t_he two-component character of the
tions of nonequilibrium membranes near repulsive walls Caﬁnembrane_ mamfests_, itself via th_e eX|s_tenc_;e of a curvature-
be amplified substantially relative to the equilibrium case. concentration c_ouplmg—f_luctuatl_ons I m_fluence _the
This amplification is studied using a scaling treatment whicg‘ean curvature in that regidsee Fig. 1. We will work with

incorporates nonlinear effects. Our starting model differ2@anced membranes for whici#) =0. For inactive pumps,

from theirs in several respects, in particular, in the way wecorresponding to  the equilibrium case, the curvature-

describe activity, in our incorporation of curvature- co_ncentration c_oupli.ng .term in the free energy effectively
concentration coupling, as well as in our evaluation of theShifts thﬁ bending ”g'd_'ty of the membrane fromto «e
relative importance of permeative and hydrodynamic effects= x — (kH)? xo . HereH is the coefficient coupling curva-
at the length scales accessed by typical experimental probesire to concentration angl, * is an inverse compressibility
We study thdinearizedhydrodynamics of such active pump- [31].
membrane systems in this paper, ignoring the role of nonlin- In closed vesicular structures found in biological contexts,
ear effects. We will describe the similarities as well as thewhile the bilayer constituting the vesicle may be symmetric,
differences in the results we obtain. chemical and physical environments within and outside the

We answer the question posed above first through a caitesicle can differ considerably. Thus, a pump protein can, in
culation of the correlations and linearized mode structure irprinciple, distinguish the side of the bilayer exposed to the
thermal equilibrium of a model impermeable two-componentinner volume from the side which is exposed to the outer
fluid membrane, incorporating hydrodynamic interactions.volume. For a large enough vesicle, flat on the large length
This amounts, in terms of the model for biological mem-scales of relevance to a hydrodynamic calculation, the pump
branes discussed above, to assuming that the pump protein®lecule can thus tellp from down whereup anddownare
are “passive” constituents of the membrane. While moti- defined arbitrarily with respect to the average position and
vated here in a biological context, such models are also us@rientation of the bilayer midpoint. As an extreme limit, we
ful outside this specific context. Physics similar to that de-may consider the case in which the pump molecules prefer-
scribed in the case where the pumps are rendered passieatially insert always on the sanisay up side, so that a
should be generic to two-component systems composed sfctionw! of the protein molecule always liesbove the
(i) a symmetriqlipid) constituent forming an up-down sym- bilayer midpoint while a sectiow' lies below.
metric bilayer phase in isolation, an@) an asymmetric A recent study of active membranes works with this
(protein constituent, in which either the shape of the mol- model of the architecture of a membrane-pump system, mod-
ecule or its location with respect to the bilayer favors a localeling activity in terms of dipole forces associated with the
spontaneous curvature for the bilayer. For concreteness, wands of the pump, as we detail bel¢28]. The associated
will often use the terms lipid and protein when referring toforces may point either outward at the erlde pumps or
constituents of type§) and(ii), following our earlier discus- inward at the endsdown pumpg see Fig. 2. In this model,
sion, but stress that the results obtained here inethélib-  up and down pumps are physically distinguishable. The main
rium case are also applicable more generally. results presented here are appropriate to this model.

For protein molecules which lack up-down symmetry, we Note that this distinction between “above” and “below”
may distinguish between molecules oriented parallel to thés artificial for strictly symmetric bilayer membranes, in
local normal and those which are oriented antiparallel to thevhich pump proteins may insert on either leaf of the bilayer
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£ f Following Mannevilleet al. in Ref. [28], we consider the
T L simplest model for pumps consistent with this requirement:
cail the pumps are taken to be dipole force centers with positive
| / and negative force centers located asymmetrically with re-
FERY \ H spect to the midpoint of the bilayer.
A wl \ - Our other major assumptions are the following: We as-
_______ oo by 0 AN . sume that our observations are conducted on scales such that
; | v the membrane may be considered toitn@ermeableo the
/ W Vs wl solvent in which it is embedded. This assumption follows
tail L. - ’ head from the work of Mannevilleet al, who observe that for
j [ active terms, permeative effects can be neglecisebvis
hydrodynamic ones over a substantial range of length scales
f t upto microscopic ones. We derive our results under the as-
FIG. 2. The asymmetric dipole model used to describe the ac_sumptipn that the. active membrane is impermeable a}nq ex
tivity of the proteins. The force centers are points at distances tend this assumption to the case when the membrane is in the

andw! from the bilayer midpoint. The centers of mass of the pumpsPassive state, to smoothly interpolate between results in the
are displaced above the bilayer midpoint. The superposed up arf/0 regimes(In the Rouse or free-draining limit, where the

down triangles indicate the underlying shape asymmetry of the twgnembrane dynamics decouples from that of the fluid, the
different kinds of pumps. membrane is implicitly permeab)élVe take the solvent to be

incompressible and work at a small Reynolds number, ne-

with equal probability. In the Appendix, we discuss resultsglecting the inertia of the fluid. We use linearized equations
for an alternative model, in which the protein attachmentof motion for the hydrodynamic velocity field, corresponding
respects the up-down symmetry of the bilayer; the center ofo the Stokes limit of the Navier-Stokes equations.
mass of the protein can be displaced either above or below We now summarize our principal results. Feayuilibrium,
the bilayer midplane as shown in Fig. 3. The head and tailmpermeable, two-component membranes bounded on one
distances from the bilayer midpoint are fixedvgtandw,,  side by a wall placed at a distancefrom the membrane
respectively. In this model, up pumps and down pumps ar@lane, we obtain the following modified mode structure to
physically indistinguishable; their nomenclature follows leading order:
from the side of the bilayer on which they are inserted.

We will present results fononequilibriummembranes in
the bulk, in which case the pumps are active, and for the case
in which fluctuations of such an active membrane are ) ) o o .
bounded on one side by a repulsive wall. This study compleln our notation,D is the diffusion cogfﬁment of the proteins
ments results by Prost, Manneville, and Bruinsma for &0n the membranery the surface tension of the membrare,
model in which curvature-concentration coupling is ignored the bending rigidity of the membrane, amcthe viscosity of
an effect explicitly incorporated in later world1]. In the  the fluid. Here,
active case, the pumps exert forces on the membrane and the
surrounding fluid. Since these forces are internal forces, they dgkf/127; if k, <1/d

must cancel when integrated over the size of the k Kk, d)~ 1.2
J plo Gk, ki) 1/4nk,  if k,>1/d (-2

head

w1~G(ok? + kk?), w,~Dk? . (1.9

T f is a “crossover function,” which describes how membrane
[ fluctuations interpolate between a regime where physical in-
tail teractions between the membrane and the wall cannot be
‘o \ ) neglected, and a regime where such fluctuations do not feel
;N w_l '\ [ ows the presence of the wdlB3]. In thek, > 1/d limit, the above
_______ ) O O S NN | NN 0 S result reduces to a derivable one in the bulk case, as is physi-
! ' } cally sensible.
1 o ows v w_l To study nonequilibrium membranes we model active
wil L - L/ head pumps, following Mannevilleet al,, as asymmetric force di-
l l poles, with force centers located at distanegsabove the

head

bilayer midpoint andv'! below the bilayer midpoint. These
distances are, in general, unequal. The magnitude of the
force exerted at each of these force centerfs e pumps
FIG. 3. The asymmetric dipole model of the pumps described iriffuse on the membrane and are characterized by a mobility
the Appendix. The centers of mass of the pumps are displaceé-
above or below the bilayer midpoint. The distance of the furthest In the presence of a wall, for nonequilibrium membranes,
force center fromz=0 is w; and the distance of the nearest force it has been argued that static height fluctuationsaanglified
center fromz=0 is wy. and an interesting speculation is that such an amplification
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may, in fact, speed up the process of membrane fusion whemembranes. Section VI discusses how these properties are

two nonequilibriummembranes are brought close togethermodified by the presence of a wall. In Sec. VII, we summa-

[27]. When the wall is at a distanafrom the membrane, rize the conclusions of this paper. The Appendix discusses

our calculation yieldgfor a tensionless membrane the details of an alternative model for active two-component
membranes, with up-down symmetry.

fG™%kH
0y~ %ki +Greok?, II. STATICS
Xo We model the membrane as an infinitesimally thin two-
dimensional surface embedded in three-dimensional space.
, kH(kHGK? —fGaW) X Points orlthis surface are speciﬂed by a three-dimensional
wp~DKk{ + — kT, (1.9 vectorR(U), with componentsRi(u), i=1,...,3. We use
Xo the Monge gauge, valid for nearly flat surfaces, in which the
_ _ surface is specified by its height above a two-dimensional
whereG®" is the crossover function, flat plane. This plane is parametrized via Euclidean coordi-
nates, i.e.,u=(x,y)=r,; R(r,)=(xy,h(x,y)). In this
dw'2k?/4y if k, <1/d gauge, the curvature i =—V?2h, to lowest order.

Gk, ,d,w! wh)~ Ok, ' wyidnk, if k,>1/d The number densities of the lipid molecules, proteins,
1 W, KL 1Lz .

(1.4) and— proteins are specified through fields, p*(u,t), and
p~(u,t), respectively. These are the physical densities of the

; ; lipids and proteins on the membrane. The projections of
Q(k, ,w',wl) is proportional to the degree of asymmetry L : o
(w!—w). In a regime where fluctuations feel the wall, non- these densities on they plane are obtained by multiplying

equilibrium effects do not depend on the asymmetry factofh® Physical density fields by the metric factgt + (Vh)?.

but only onw', as seen above. Here again curvature-T10 lowest order in gradients ¢f physical densities and pro-

concentration coupling plays a crucial role in the manifestaiected densities coincide. The scalar fieldgu,t) and
tion of nonequilibrium effects in the linearized mode struc-¢(u,t) are defined by ¢(u,t)=p*(u,t)+p (u,t) and
ure. . . (U =p"(U)—p~(u).
w, is the most important one since it is of ord@(k?). The  of a part arising from protein and lipid densitiéhe matter
existence of this mode depends crucially on the presence @fary and another which arises as a consequence of mem-
both activity and curvature-concentration coupling. It will be prane fluctuations about the flat state. Given equilibrium
shown later in this paper that this mode causes active mengoncentrations of the lipid and protein pd),
branes near walls to relax faster than their equilibrium coun; , /™ «\\_/ +/7 — T — ~ N (T
terparts and causes a smoothening of membrane fluctuation<s§;b(ij't~)> {p (u’t)+P. (U0)=co, ((ut)=(p (u,t).
in the presence of a wall, the roughnessesfsionlessactive ~_” (u,1)) =4 and fixing p=po and ¢ = ¢, the appropri-
membranes averaged over a patch of gizeL, (h%(L)), ate gauge-invariant free energy of the membrane with asym-
scales as Ink() instead ofL2. Thus the wall acts tsmoothen metric proteins Is
active membrane fluctuations in a tensionless membrane by
inducing an apparent surface tension. This result is a purely
nonequilibrium one, since the apparent surface tension van- F=J dzﬁ\/ﬁ
ishes when the strength of active forces is set to zero. It also
relies crucially on the existence of a curvature-concentration 1
coupling, since the apparent surface tension also vanishes + EKJ dZU\g(H—Ho)?, 2.1
when the curvature and concentration fields are decoupled.
We show that this effect can be understood in terms of the
dynamics of the fast relaxing field, which drives the height whereo is the surface tension andis the bending rigidity.
field h(r, ,t) via activity and curvature-concentration cou- To lowest order we takel():ﬁw. To leading order in gra-
pling. dients ofh, we have

The outline of this paper is as follows: Section Il de-
scribes our basic coarse-grained free energy and reviews the
calculation of the static properties of a two-component mem-
brane with curvature-concentration coupling. In Sec. Il A,
the free-draining approximatiofRouse modelis used to
discuss the dynamics. In Sec. Il B, we incorporate the ef- o 2 -1 2
fects of the hydrodynamic velocity field of the solvent. Sec- ZHiy(rL DV D+ xo 9l U7 (22
tion IV describes the mode structure in the presence of a wall
for the equilibrium problem. In Sec. V, we discuss the modeyielding a local force density df(r, )= — 6F/sh|,,. The lo-
structure and correlation functions of active two-componental force density is evaluated at constant derns38.

1
o+ 5 X0 (Y= tho)’

F= %f d?r [«{V?h(r_ ,t)}*+a{Vh(r, ,H)}?
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The partition function ig§36] The proteins diffuse freely on the surface of the mem-
brane. Sincey is locally conserved, it obeys an equation of
continuity of the form

z=f DIh]D[ e AFIN, 2.3

oF
which yields, on integrating out the field, an effective free dup(r ,t)=AV2§/l+V-f¢, (3.2
energy for the height fielé 4¢{ h],

1 (kH)? ) - -1 i T i .

_ 2 4 2 4 2 with A=D/x, ", D is the diffusion coefficient of the pro
Ferlhl=3 % (o +xkD)lh(k,) —3Ki[h(ky)] teins on the membrane. A contribution due to the in-plane
(2.9 current of the pumps has been dropped; this is typically
small and can be neglected to linear order. This term contrib-

The equipartition theorem yields the equilibrium correlationUtes if we go beyond the strictly linear treatment by replac-

2 2\ vieldi i i i i
function for the height field fluctuation@bout the equilib- N9 ¥~ by (), yielding a convective term which gives rise
rium, flat, “mixed” phase as to waves whose speed is independent of the wave vector

[23,31]. The last term is a conserving Gaussian noise with
(fy(r, ,1))=0 and correlations (f(r, ,t)f,(r,t"))

keT =2AKgT8;8(r, — 1) 8(t—t').

(h*(kp)h(k,))= (akarKekj) ' (2.5 Equations(3.1) and(3.2) can be written as
wherex,= k— (kH)?/xo *. The asymmetric components act h(k, ,) T'(ok?+kk!) TxHK?
to reduce the rigidity modulus from to . as a consequence o =— o
of curvature-concentration couplifig1], an effect easily un- (ko) A xHk? Axo k2

derstood on physical grounds. We assume thais small
enough to keepx, positive, in which case the membrane is
linearly stable. Instabilities arising at equilibrium due to X

large values oH have been discussed [87].

h(kw)) fm
. (33
Pk, ) +(ikl.f¢) 33

Ill. MODE STRUCTURE IN THE BULK Solving these coupled equations yields

We now study the dynamics of a two-component mem-
brane with curvature-concentration coupling and suspendeg. « K h(k
in a solvent. We will first present results in the Rouse modelgh (ki s@)hik, )

limit in which the background fluid drains freely thr(_)ugh the (ff ) (w2 + 7;12)+2(FKW)2Ak3TkE
membrane, and effects due to the hydrodynamics of the = > 1 1 = 2 1. 1’
background fluid velocity field can be ignorg8i8]. [-o™t 7, 7, = AL(«H)k[ ]+ 0*(7), "+ 7 )

(3.4
A. Rouse model

In this model the fluid velocity field decouples from the
membrane height field ang. The membrane is implicitly
permeable and the height field fluctuations are governed byIae
balance between the elastic forces and log@rmeativée
friction. An equation of the form

wherer, =T (ok{ +«k!) and 7, "= A xo k% .

On integrating overw, this correlation function should
duce to the same form as E@.5). This constrains the
equilibrium thermal noise correlations to be the following:

SF (Fm(r D fm(r] ,t))y=2TkgTS(r, —rj)8(t—t").
ah(rL =T 2+t 3.1 e o (35

follows, wherel is a kinetic coefficient and,, is a thermal  In addition, we imposé&f,(r, ,t))=0.
equilibrium noise whose statistics ensures that the static To obtain the mode structure, we drop the noise terms in
height-height correlation function is E¢R.5). Eq. (3.3 and find the eigenvalues of the matrix. This yields

1 1
wl,w2=§[r(akﬁ+f<kj)+ Dkf]iz{\/[r‘(akfﬁ— kk?)+Dk?12—4DTk? (ok? + kckh)}.
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In the absence of curvature-concentration coupling thesthe velocity lie in the plane of the membrane and are perpen-
modes decouple and are,,w,=T"(ok? + «k?), Dk?, the  dicular and parallel tk, , the wave vector describing fluc-
dispersive modes of a tense membrfB@]. For tensionless tuations of the membrane. Some algebra yields these compo-
membranes, the presence of curvature-concentration conents ag3]

pling modifies the mode structure to

1 e .
(kH)2 vz(ki,z)=mj'wdz’ekﬂ A (1+k, |z—2'])

w1~T kek] ,w,~DK? + ——-Tk{ . (3.6)
Xo XFy(k, ,2))+ik (2 —2)F (k. ,2')],
B. Zimm model -
Next, we examine the effect of solvent hydrodynamics on ~ vi(K1,2)= Wf_mdz’e_kilz Sk, |z-2])

the dynamical correlation functions of the protein density

field and the membrane height fil@8]. Since no external XFi(k, ,z")+ik (2’ —2)F (k. ,z")],
forces act on thdfluid+membrane-proteing system, mo-

mentum conservation requirg40,41

(3.1)

M= Vi 3.7 vi(k,,2)= 7 1|< f dz'e M ¥ 72F (K, ,2").
whereg is the momentum density and; is the stress tensor. LS (3.12
The stress tensor takes the formr;=Pdj;+pvjv; '
—n(Viv;+Vv))+8;, wherev(r,t) is the fluid velocity,
P(r,t) is the pressure field, arf§); describes the contribution
to the stress tensor arising from membrane conformation
(the V2 in the above equation is evaluated in three dimen

siony. In the Stokes limit, the nonlinear term can be
dropped. At low Reynolds number, we neglect the |nert|alby the fluid. The velocity of any point on the membrane is

tiarm on the left-hand side of Eq3.7) leading 0V mj;  ne; component of the velocity of the fluid at that pof@8].
=0, and thus the equation governing the hydrodynamic vetpe equation of motion for the height field of an imperme-

locity field, able membrane is therefore

Note that the transverse components can be ignored since
they do not couple to the other components. We can now
éalculatevz(kl,O) by supplementing the above equations
‘with boundary conditions.

In the absence of permeation the membrane is advected

pV2(r,t) = VP(r,t)—F(r,t)+fy(r,t)=0. (3.9 (s D=0, .08) 313
t 1Lst) Uz ,Yst )y .

F(r,t) is the force acting on the fluid due to membrane

stressesS;; and fi(r,t) is the equilibrium thermal noise wherev,(r,,0¢) is the velocity of the surrounding fluid at
present in the bulk of the fluid. This noise obelfg(r,t))  the mean position of the membrane. The force acting on the
=0[28,29 and is related to the viscosity via the fluctuation- fluid is of the form

dissipation theorem,

, (3.19

SF. .
— %Z-F F| kL

(Fri(r, O fpi(r' 1)) =2ke Tnp{ — 8;V?+3,9;} F(k, ,2)=6(2)

X8(r—r")s(t—t"), (3.9
whereF" is the longitudinal component of the force acting
where (,j) index the components of the force. Equationson the fluid due to the membrane. The elastic force density
(3.8 are to be solved together with the |ncompreSS|b|I|tydue to the membrane is SE/shz . We solve forv ,(k, ,0)
condition using Egs(3.11), together with the boundary condition that
V.v(r,t)=0 (3.10 the membrane is incompressig5], i.e., the in-plane diver-

' gence of the velocity field vanishes at the membrane. This
to obtain the mode structure of an impermeable twoimplies thatv,(k ,0)=0. This boundary condition gives
component membrane in the presence of an incompressibfa =0, yielding

solvent[42].
We employ a useful convention due to Seifert in which a B 1 oF
basis spanned by tlecomponent and the longitudinal and va(ky,0)=— Ak, She (319

transversean-plane components of the velocity is usd].
(This convention will be useful further on in this paper whenThe pylk thermal noise present in the fluid also contributes to
we discuss membrane fluctuations in the_ presence of a Ccol-(k 0. This contribution is denoted biy, with

fining wall) We solve the above equations to obtain the

transverse t), longitudinal (), and z components of the

fluid velocity in terms of thet, |, andz components of the fz(klio):J’

dk ( Ojz— &)[fh(k:t)]j . (3.16
force F acting on the fluid43]. Thet and| components of 2 k2

K
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We can use the noise correlation function given in &9 ok +kk*  kHK?
to show that the nois&, has zero mean and that its variance h(k, ,o) Ik —kL h(k, ,w)
in Fourier space is RsT/47k, . Uk, o)) =7 (S 4k, ok, o)
Finally, Eq.(3.13 becomes = AxHK?  Axo'k? o
F f(k, ,o)
dth=————+1f,(k.,0}). 3.1 2k

t 477kj_ 5h Z( 1L ) ( 7) +( ikl-fl// ) (31&
The density difference field obeys E&.2). Equationg3.13
and (3.2 can then be written as Solving these equations gives

’ _
(2kgTIAnk, ) (w?+ 7,2) + kg TA(kH) %87 1k!
(h* (k. w)hik, o)) = — g Ty ) e I (3.19

{—o?+ 1, 7, = [A(kH)2147]K5 12+ 0?(7, '+ D2

The parameters appearing in the above equations are as expected. The roughness of the height field at macroscopic
length  scales L, defined through (h?(L))

il ok k), Ay . (320 —Judki((k)N*(K,), scales as

47k
. keT L
Integrating this result ove® recovers for us the equal time Ke L if =0
correlation function for height fluctuations about the equilib- (h?(L))= T 3.22
rium, flat, mixed phase, %In(L/a) if o0,
kgT . : .
(h*(k, ,t)h(k, ,t))= 5 ™ (3.2)  wherea is a microscopic cutoff length.
(oK + kekl) The mode structure is then

L Kk, + k3 +47DK? L V(ok, + kk® +47Dk?)2— 169D (kK> + ok’
wlywz—sﬂ(gi KK} n L)_87][ (ok, +« i n L) 7 (Kel U'L)]-

In the absence of curvature-concentration coupling,w, = membrane is kept at distanddrom the wall by a repulsive
=(ok, +«k3)/4n,Dk?, i.e., the decoupled modes of the interaction with the wall and a suitable external pressure

membrane height field and the protein concentration field invwhich prevents it from floating away into the bulk.
the presence of hydrodynamic correlations. For tensionless The relaxation rate of an equilibrium membrane is re-

membranes with nonzero curvature-concentration couplingluced near a wall; in tandem, the equilibrium noise fluctua-
the modes are tions are required to have a reduced amplitude as a conse-

guence of the fluctuation-dissipation theorg28]. On short
length scales, however, membrane fluctuations do not see the
wall, and the height-height correlation function is identical to
that in the bulk. This can be used to determine the form of
thermal correlation functions in the presence of the wall.
We work in the linear regime whexé?(L.))~d?, defin-
IV. MODE STRUCTURE IN THE PRESENCE OF A WALL ing a collision lengthL_.. Beyond this length the membrane
. o . _senses the presence of the wall, and the nonlinearities ne-
Consider a fluid b||ayer membrane with Shape asymmet”%ﬂected in our treatment become importantcljs the small-
constituents, suspended in a fluid bounded on one side bygst wave vector above which the linearization condition
wall. Our model for the membrane-pump system follows thath(r, ,t)|<d is valid. From Eq.(3.22 we can estimate the
of Mannevilleet al. In our coordinates, the membrane fluc- collision length of an equilibrium membrane near a wall to
tuates about the=d plane and the wall is at=0. The be

K (Kﬁ)2
wl~—;kf y (1)2ka§+ —_1

k3. (3.23
4 47})(0 .
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Ke ) whereF} andF}" are thez and longitudinal components of
B K Td if 0=0 the force exerted by the wall on the fluidzat 0. The quan-
Lc(d)_ B (4.1 . m w w ;
titesF,", F;, andF|" can be evaluated using the boundary
conditions: all components of the velocity should vanish at
the wall (no-slip boundary condition41]. This imposes

aexp(od?/kgT) if o#0.

We now solve Eq(3.8) to obtain the velocity of the fluid
at the position of the membrane. The membrane and wall are v,(k, ,00)=v,(k,,0t)=v(k,,01)=0. (4.3
introduced in Eq(3.8) as external forces acting on the fluid,
imposing the required boundary conditions. The incompressthese conditions, together with membrane incompressibility
ibility of the fluid is used to solve for the components of the[v,(k, ,d,t)=0], provide the boundary conditions for the
velocity in terms of the components of the external force. velocity field of the fluid at the membrane. This gives
We express the components of the velocity in they,(k, ,d,t)=—GéF/sh. The equation of motion for the
“mixed” basis of Seifert[3] as before. The force exerted by height field is then obtained from E¢B.13 [33],
the membrane and wall on the fluid is of the fo[8]

oF
—_ —_— _+ )
+5(Z)[F‘Q’2+ F;Nkl, dh(k, 1) g5h f,(k, ,d,t), (4.9

(4.2  where

OF . -
F(k, ,2)= 5(z—d)[ — 52t F'k |

Gk K. d)= 2[sint?(k, d)—(k, d)?] {d3kf/1277 if k, <1/d s
ST Agk \ sint(k, d)— (k, d)2+k, d+sinh(k, d)coshk, d)] | 1/4nk,  if k,>1/d. '
|
We note that the term for the conditidn <1/d is incorrect h(k, ,) G(ok?+kk?)  G(xkHK?)
for arbitrarily small wave vectors. The relevant cutoff is the ﬂt( - ) =— _ _1l2 )
inverse of the collision length. . since linearized calcula- (ko) AxHK? Axo kT

tions are not valid at wave vectors smaller than this value.

The contribution to the velocity field at the membrane due x( h(k, ’w)) Tk, o) 4.6
to the noise in the fluid in the presence of the wallfis Wk, o) ik, -f, | '
Following the procedure used in the derivation of E3118),
we get This matrix equation is solved to yield

T, ) (w?+ 7,12) + 2kg TA(GrH)?K®
(h* (k. ,0)h(k, ,0))= —— < ifwx_l L ( . )_ﬁ —, 4.7
[0t 7~ 7, —GA(kH)K ]+ 0(7) "+ 7, 77)
|
where r, = G(ok? + «k?). the equilibrium bulk noise wheik, >1/d, i.e., when the

The hydrodynamics of the solvent cannot change equilibmembrane fluctuations are not significantly affected by the
rium correlation functions. Thus, demanding that equal timewall (see Sec. I\

correlations of theh field are the same as in E(.21), we We note here that the equation of motion of the height
obtain the noise correlation function?;{ as field can be derived in the limit <k, <1/d by directly
imposing impermeability as ifi29]. Since the membrane is
(Tf’z(kl )=0, 4.8 impermeable, the height field is conserved and obeys a con-

tinuity equationdth=—V -j,,. The height “current” can be
_ _ calculated from the lubrication approximation gg=
(f(k,,O)f (k] ,t"))y=2kgTG(k, ,k, d)s(k, +k])s(t—t’). (—d%12%)V P, whereP is the pressure due to the elastic
(4.9  forces and the noise. Using the appropriate expressions for
these terms, we recover the equation for the he[dg.
Note that this reduces to the noise correlation function for(4.4)] in the close to the wall limit.
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The eigenmodes follow from Ed4.6), ation and curvature induced activity on the dynamics of an
active membrane in bulk are considered. In our model we

1 1 assume impermeability from the outset and neglect the ef-
(DK + o G2 + kGK) + = P Y g

w1,03=5( 2 fects of curvature induced activity. Such a minimal model
makes the calculation of the correlation functions of a wall-
X[V(aGk? + DK? + kGk?})2— 4GD (0 + rk? kT 1. bounded active membrane more tractable and transparent.

We begin by writing the equations of motion for the vari-
In the absence of curvature-concentration coupling theus fields. The fluid is incompressible and hence obeys Eq.
modes corresponding to the hydrodynamic relaxation of §3.10. Since no external forces act on the flichembrane
two-component membrane near a wall are recoveredsproteins system, momentum is conseryé@,41 and Eq.
w1,0;=G(0k? +«k?),Dk?. For membranes with (3.7) holds. The momentum current tensey; is then
curvature-concentration coupling, the modes are modified to
(Kﬁ 2 7Tij = P5|l +pUiUJ'_ n(Vivj—’_VjUi)—’_Sij +Aij y (51)
w1~G(ok] +rek}), w~Dk?+G——k. _ _ _ _ _ _
Xo wherev(r,t) is the three-dimensional fluid velocity(r,t) is
(4.10  the three-dimensional pressure fieB. is the contribution to
) ) . the stress tensor due to membrane conformationsAgnis
Itis easy to see that these reduce to the expressions derivggh contribution from the active pumps. Equati¢Bsd) and
in the bulk case, in the limit in which membrane fluctuations(3 10 can be solved as before for the transvere longi-

are unaffected by the wall. tudinal (), andz components of the fluid velocity, in terms
of thet, I, andz components of the force(r,t) acting on the
V. NONEQUILIBRIUM MEMBRANES: fluid due to membrane and pump stresses. The transverse
MODE STRUCTURE IN BULK components will be ignored as befoffg(r,t) represents the

Wi di the d . lati d mode st thermal noise present in the bulk of the fluid.
t efnowl IScuss t?l )t/nam|c corre atlons arl; mo e'ti U We can now calculate,(k, ,0t) by solving the equations
uré ot an impermeable two-component memborane with aCq¢ 46 with appropriate boundary conditions. The equa-

tive force centers, when placed far away from_conﬂnmgtion of motion for the height field in the absence of perme-
walls. For inactive force centers, the static properties of sucla

. tion is d;h(r, ,t)=v,(r,,0t), wherev,(r,,0t) is the ve-
?SVStem are given by the fr.ee. energ.y.of E42). However, locity of the surrounding fluid at the mean position of the
in the presence of nonequilibrium driving forces, thermody-

) toring f tb I ted by additi embrane. The membrane does not feel the forces from the
hamic restoring Torces must be suppiemented by a Ilona;Fumps directly because of the absence of permeation but
terms. These are discussed briefly here.

First, we must account for nonequilibrium forces. In theOnly via the forces the pumps exert on the fll@8,29. The

h contribution of the bulk equilibrium thermal noise present in
context of the membrane-pump system, these arise due to tl?ﬁ d P

" f th H . : f i e fluid to thez component of the fluid velocity a=0 is
action ot th€ pumps. FOWEVET, SINCe PUMpIng Te1ers 10y 1o giatistics of , have been discussed earligsee Sec.
forces internal to the system, the force density e>_<erted on thﬁzl). The density difference field obeys the diffusion equation
whole systermembranet pump+ solven) must Integrate g.(3.2). As in the equilibrium case, we work in the linearly
to zero on length scales comparable to the pump size.

X . ) . . . stable regime.
simple representation of this requirement idealizes the pump The membrane fluctuates abaut 0. The force exerted
as two force centers of opposite sign but equal magnitud :

separated by a distaneg +w! and embedded in the bilayer. Sy the membrane and pumps on the fluid is of the form
Such a “force dipole” representation was introduced in Ref. S
E]Zefi]eand will represent an important part of our discussion F(k, ,z')=6(z")| - EEJFFlmlzl

Second, we must account for the nonequilibrium nature of (5.2
the noise present in the fluid due to the switching on or off of

the pumps. For simplicity, we assume that this nois@is The forcef ,mpuia is Modeled as a dipolar force density

correlated. Such an assumption corresponds to a coarg@th force centers located asymmetrically about the0
graining in time across the typical pump “dead” time which plane,

separates two pumping events. The nonequilibrium active
noise can now be absorbed into the correlation function of
the equilibrium noise[Eq. (3.9)]. However, note that the
“temperature” which appears in this correlator is not the
thermodynamic temperature. To smoothly interpolate to thavheref sets the scale for the active force.
equilibrium case, we must redefine this temperature as an We again solve for the unknown coefficieR{" using
effective temperature, which becomes the true thermodymembrane incompressibility. This imposegk,,0t)=0 in
namic temperature in the absence of activity. Eq. (3.11). The hydrodynamic velocity obtained 2&0 us-
Several of the results in this section overlap with those ofng Eq.(3.11) enters in the equation of motion for the height
Mannevilleet al. (Ref.[28]), in which the effects of perme- field:

+fpumpf|uidz-

foumptiuia=f(r, ,H[8(z —wh)—s8(z' +wh)], (5.3
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1 oF Kﬁpw
ath(k, ,t)= Ik | Sp Tk DOk, whwh) (hZ(L)):kBTLZ/ Ke— o (5.10
F1a(k.,00), 5.4 for tensionless membranes and
where
kgT
(h?(L))= —In(L/a) (5.11

Qk, whwh)=—e " (1+k wh+e k" (1+k w)

(5.5  for tense membrane®=f(w'2—w'2)/2w, wherew is the
size of the pump, represents the force dipole energy. It is
estimated to be a felwgT [28]. These results imply that on
large length scales, pumping activity does not change the
roughness of equilibrium, tensionless membranes but shifts
(5.6)  thetemperatureat lowest order to

2 3
:?(WlZ_WTZ)_,_ ?(Wi3_WT3)+ .

xkHPw

-1
KeXo

Note thatQ(k, ,w',w!) vanishes whemw'=w!, implying orf
that an asymmetry in the position of the force centers above =T
and below the membrane midplane is needed for a nonzero

active (nonequilibrium force. The equations of motion are  For tense membranes, both roughness and effective tempera-
ture are not affected by nonequilibrium effects at large length
scales since the divergence of the height correlation function

1+

. (5.12

ok®+ k! kHKZ—fQ(k, Wi w')

h(k, ,w) P with system size remains logarithmic.
& wik, @) T Ak In the stable regime Eq5.10 is positive, as discussed
AxHk?} Axo 'k? later in this section. The correlation function in E§.10 is

calculated from the lowest-order diffusive terms. Manneville
et al.[28] calculate an identical correlation function ng-
h(k, ,@) fa(k o) glectthese diffusive terms in favor of higher-order terms on
X (K, o) ik, -f, | 5.7 the grounds that the diffusion constant is small in the physi-
cal situation. For this reason the effective temperature we
calculate in Eq(5.12 is not the effective temperature that
The correlation function for the height fluctuations of an ac-Mannevilleet al. calculate and compare with experiment.
tive membrandabout the flat, stable, steady-state phase The height correlation functions we calculate in our lin-
then earized approachEgs. (5.10 and (5.11)] show that the
roughness of an active fluid membrane is unchanged in the
bulk. The calculation of Ref[29] obtains an enhanced

* _ keT roughening. The reason is the different nature of the force
4nk, densities used in both the calculations. Peisil. consider a
9o model in which the membrane feels the activity of the pump
P S S f°Q only as a consequence of permeation. In our calculation, Eq.
v h a Ak, xot (5.4) written as a Langevin equation is

(T_/1+T_1)(T_le+7'_l) _

v e (kHK2 = Q)

AT
(5.13

We assume that the pump is always in the active state over
the time scales of our interest. The forces on the right-hand
side of the above equation arise from three sources: an elastic
part(due to the curvature-concentration coupling term in the
1 «H free energy, an asymmetric dipole patfrom the activity of
T, = T 1k, whwhk? . (5.9  the pumpy and the thermal noise from the fluid. Since the
7L X membrane is impermeable it does not feel the active forces
or thermal noise directly but only via the fluid. We empha-
We discuss the positivity of the right-hand side of E5.8) size that in the present model the membrane senses active
after discussing the mode structure of the system. From thiorces and thermal noise even wheg=0, in contrast to the
equal time correlation function we can calculate the quantitymodel of Proset al.[29].
(h%(L)). To lowest order we find The modes are

(5.8 ah(k, ,t)+ 7, thk, t)=—

where the quantities,, *, 7, * have been defined earlief; ‘¢

has the same form as, * with « replaced byk,. The relax-
ation time
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_ ok 4nDK2 + k) V(ok, +47DK? + kk3)2— 167(D k k> + D ok® + fH K A QK3
w11w2_877(0'L nuK Ki)—877[ (oky UK, KL) 7(D kek? OK| K L)]

In the absence of curvature-concentration coupling, nonequi- SF .
librium effects vanish to lowest order and the modes are F(k; ,Z')=5(Z'—d)[—% 2+Fk [+ fy(r b
those for an equilibrium membrane with hydrodynamic in-
teractions wl,w2=(a'kL+ka)/47;,Dkf. When o=0, X[8(z' —d—w')—8(z' —d+wh)]z+ 8(z')
curvature-concentration coupling modifies this mode struc- . .
ture to X[FyYz+F"k,]. (6.2)
Ke 5 frH(W!Z2—w'?) | We need to determine the unknown coefficieR{§, FY,
w1~ 4y T 7 Lo andF}". The following three boundary conditions are used,
X0 following Egs.(3.11):
,  KkH[2KkH—f(w'2—w'?)]K} v,k 00) =v,(k,,00)=v,(k, ,d,t)=0. (6.2

(5.19

(1)2~D L+

-1
87x0 These boundary conditions impose the following constraints:

We see that to lowest order, nonequilibrium effects are ap{l) vz(k. ,z=0)=0, i.e., thez component of the velocity
parent only at nonzero curvature-concentration coupling. w¥anishes at the waltji) v|(k, ,z=0)=0, i.e., thel compo-
also observe that the nonequilibrium terms vanish wwen nent of the velocity vanishes at the wall, afii) v|(k, ,z

=w. =d)=0, i.e., the membrane located ztd is incompress-
For stability we require that all the eigenmodes of theiPle. We neglect the tangential component as before.
system must decay. This means thatand », are positive. The values of the three unknown coefficients are obtained

.. — -1 on solving the three simultaneous equatipig. (3.11)] to-
To the ord_er .above, this |r'nposes?/./<—.1<H?\/\.//XO gether Wi?h the three boundary cond?tions. 'Ighese values can
<Kelw. If HP is such that this condition is satisfied, then then pe used to obtain the velocity of the fluid at the location
the system is stable independent of the sign of this parametej the membrane. The velocity thus obtained has a part aris-
Typical experimental values such as=10kgT, «H ing from equilibrium elastic forces and a part arising from
=wkgT, xo '=W?kgT, f=10"1? N satisfy the above condi- nonequilibrium active forces. These can be separated out,

tions[44]. yielding the equation of motion for the height field as
oF
VI. NONEQUILIBRIUM MEMBRANES: MODE ah(k, )= K dt)=— ( LG )T (K, ot
STRUCTURE IN THE PRESENCE OF A WALL I g sh G+ k),

(6.3
We now study the effect of a wall located zt0 on the

fluctuations of an active membrane locatedzatd. The whereG is the usual hydrodynamic kernel obtained for the
forces exerted on the fluid by the membrane, pumps, and thequilibrium fluctuations in the presence of a wall, and the

wall are now given by new nonequilibriumterm
2
To (3dw?—2w'3) + O(kf) + - - if k <1/
gk, dw' wh~¢ 6.4
Tw! if k,>1/d
477klQ(kL W w) if kK,

is the hydrodynamic kernel for nonequilibrium fluctuations hencew!® can be neglected in comparisondav'2. In the
in the presence of the wglR9] (the expanded form of this long wavelength limitG2"¥ depends ow! and not on W'
kernel is given in Ref[45]; see also Ref{46)). In the ex- —w!) as in the bulk. When the fluctuations are not affected
pressions forg and G2%, the lower cutoff onk, is the in- by the wall,G3" vanishes whemw' equalsw' since in bulk,
verse of the collision length.., which we will calculate the directions up and “down” are equivalent. The nonequi-
towards the end of this section. The membrane-wall distibrium contribution to the force density therefore vanishes.
tances we use in our calculations are suchd¥aw',w! and  Thus, in this large membrane-wall distance limit, we recover
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the previous situation of active membrane fluctuations where
the asymmetry was crucial for nonzero active force density.
The wall breaks the symmetry in the up and down directions
and hence the hydrodynamic kernel picks out a particular
direction and does not depend om'(—w') when membrane

fluctuations feel the wall. The statistics for the ndisén the
presence of the wall follows from Eqé&t.8).

from

k
h2 :i_
(h*(L))=—=

The equal time correlation function can be calculated<h2(L)>:kBT

PHYSICAL REVIEW E 66, 031914 (2002

T[e' xo"

ef

kgT
In(L/a)~ TIn(L/a)
(6.9

e
D

for tensionlessnembranes and

€' +(f2€2/Dxy )
e’o-f—(efkg/)(al)

kgT
In(L/a)~ —eln(L/a)

o

(h(kj_ !w)) _
(9’[ w(kL !w) o

G(ok? +xkl)  GrHK? — G2
AxHK? Axg K2
X( h(k, ,w)) +("f‘z_(kl L)
‘//(kiaw) |kl'f¢
The correlation function is

(h*(k)h(k,))=kgTG

). (6.5

fzgaWZ)

Xo'G

X -1, —lw ~lwey —lw !
(7, + 7 (7, T2 ")

( 7';14- Tﬁlw— 7';1W+

(6.6)

where

xH
T =G(ok2 +kk}), V= gaWkaf . (6.7
0

7 ™% has the same form as, * with « replaced byk..

(6.9

for tense membranes. We have defined the quantiies
=dw'?/(47) ande’ =d>/(127) for notational convenience.
Thus, the presence of the wall makes tensionless active
membranes less rough than they are in bulk since the height
correlation function scales now logarithmically with in-
stead of quadratically. Note that this effecbigpositeto that
predicted via the scaling arguments of Presial. in Ref.
[29].

The effective surface tension is then

xH
S=r———. (6.10

e’x61+f6
ef D

This is an explicitly nonequilibrium effect, sinéé=0 when
f=0. The induced surface tension also crucially depends on

the curvature-concentration couplig since it vanishes on

setting this coupling to zero. Therefore, both nonequilibrium

forces and curvature-concentration coupling are essential for

the stiffening of a tensionless, active membrane near a wall.
To calculate the collision length, we seth?(L.)~d? in

Inserting physically reasonable values for the parameter
which enter these definitiorisee belowy, we verify that the Eqs.(6.8) and(6.9. Thus
right-hand side of the correlation function is always positive.

2 H —

Thus, this correlation function is calculated in a regime in L(d)= aexpXd/kgT) if 0=0 (6.11)
which the active membrane is instablesteady-state phase. ¢ aexp(o®d?/kgT) if o#0.

At large length scales and in the presence of a confining
wall (1/L.<k, <1/d), The eigenmodes have frequencies

1 1 —
wl,w2=§(Dkf+gakf+gKkj)i§[\/(Dkf—I—gakf+gxkj)2—4(fgaWHKAkj+gDKekE+gD0k‘j)].
|

In the absence of curvature-concentration coupling, nonequi- KH(KHGK? — G2W)
librium forces have no effect on the modes and the modes wy~Dk? + . k2. (6.12

e . -1
reduce to those of an equilibrium membrane in the presence Xo
of a wall, within the linearized theory. For tensionless mem-
branes with nonzero curvature-concentration coupling, nong,

S . hen membrane fluctuations are influenced by the vll,
equilibrium effects become apparent in the mode structure._ d3k2/127 andG "= dw!2k2/47 to lowest order. Far awa
The modes to lowest order are 11~ L7 X Y

from the wall the modes reduce to those of a nonequilibrium

fGaW,H membrane in the bulk.

Tki +gKekj , It may seem that for initially tensionless membranes near
Xo a wall, the induced surface tensi@h can have either sign

w1~
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depending on the sign of the curvature-concentration coupositive, the number of up pumps in the region of positive
pling H. We will show that for stability, it is imperative that curvature tends to decrease with time and the decrease in the
epumping activity causes a smoothening of the membrane.

However, ifH is negative, the region of positive curvature

H is positive for active membranes close to walls; a negativi

H leads to a negativer;, and thus an instability. The re- X )
. o . attracts more up pumps, which further bootstraps the height
quirement of positivity oH in the stable regime ensures that fluctuation, leading to an instability

our approximations of considering fluctuations at linear order The explicit expressions obtained above also permit us to
ab(\)/\l;t an initial flat tstea(:]y-s_tatle phase a[[efself-ﬁonssten_t. estimate the collision length for tensionless active
© now present a physical argument tor Wiy pumpiNgmempranes in the presence of repulsive walls. Using

activity should lead to @hesnffenmg of active, _tensmnless \?stimates given in Ref28] for various physical quantities
membranes near repulsive walls. The calculations of Sec. | 50 4 15 1 o1
{k=10""J,H=5 nm,f=10""°N, d=1 um, x, =10

indicate that the eigenvalues governing the relaxation of = . ) s

tense, equilibrium membrane near a wall a@®k*/(127) 7 10);7 "ngsf'pl‘/j tf‘rzt_ :he llntducEed .T,Igrfac? tetnsmi;

andDk? . For an active, tensionless membrane near a wal] . m. 1TiS ransiales to cotision feng "]‘% 0
the order of 18-1C times molecular scales. Assuming mo-

these eigenvalues areH fdw 2k} /47xo * and DK? . Ihe lecular length scales of the order of 1 nm, this calculation
coefficient of the slower mode for the active c4€&(k)]  would then predict collision lengths of the order of millime-
can be written as{Hef/ e’ x, 1)d%/(127) and compared to ters, for membranes with physical parameters in the above
the expression for the slowest relaxation mode for tenseange.

equilibrium membranes. This comparison suggests that an

apparent surface tensiorxﬁef/e’xgl) is induced due to
purely nonequilibrium effects, even for a membrane with VIl. CONCLUSIONS

vanishing bare surface tension. This paper has presented a calculation of the linearized
In the linearized theory, the induced surface tension ob; Pap P

tained using the above argument and the surface ter¥ion hydrodynamics of two-component membranes including the

obtained from the coefficient of the logarithmic term in the effects of curvature-concentration coupling, specifically in

calculation of the height roughness coincide. It is thus appart-he context of a simple model for a biological membrane

ent that the presence of the wall smoothens a tensionle with protein and lipid constituents. We have studied in some

. o . "€Sgetail the case in which such membranes are placed close to
active membrane by making it relax faster than its tension-

I as well as far away from a confining repulsive wall. We have
less equilibrium counterpajtvhose slowest mode @(kf)]. Y grep

Why d " b lax fast th I onsidered the case in which such proteins are “active,” in
Hei h%/f' (?gs%lantact_lve mem rar(;e relax t?S er neard g V\f[ﬁ which case they exert nonequilibrium forces on the solvent,

eight nield fluctuations are predominantly governed by th€,q \ye|| as the case of “inactive” pumps, corresponding to
¢ field [the second term in Eq6.3)] because this term is

N X : thermal equilibrium.
O(k?) in contrast to the other terms which are of higher  rho cajculations we report are for a model that shares

order in wave _number.av'vrhus, t_his equati(_)n to Iowes? or(_der ir1many similarities with that of Ref[28]. Manneville et al.
wave number ighh=G*"f4. Since they field relaxation is  consjder the more general case of a membrane with a finite
fast compared to the height field, we may assume that, ov&formeability whereas we work with an impermeable mem-
the larger time scales of interest to us in studying the dynamp ane throughout. In addition, we neglect the possible effects

ics of the height field,y relaxes instantaneously ®s=  of curvature on activity. However, the relatively simpler
—(kH/xo Hk2h. The effective height field equation now structure of our model enables us to establish a connection
becomes with equilibrium results in a more transparent fashion. We
work in a framework in which boundary conditions are ex-
fexH plicitly implemented. This is especially of use when we con-
dgith=————k?h. (6.13  sider the linearized theory of fluctuations of an active mem-
Xo brane near a wall. To the best of our knowledge, the results

o . ] ~we report for the linearized hydrodynamics of active and
Note that the coefficient of the; term in the above equation jnactive two-component membranes near walls are new, as
can be rewritten to obtain the induced surface tenfios  are our results for the equilibrium case far away from con-
explained in the previous paragraph. fining walls.

The above argument invokes and crucially requires the \we find, far away from the walls and consistent with the
presence of the wall, activity, and curvature-concentrationtesults of Mannevilleet al. [28], that the presence of active
coupling. In phySiCﬁ' terms, helght field fluctuations are aC-pumpS on the membrane does not Change its roughness_ In
companied by fast relaxation of the protein density figld the case of tensionless membranes, fluctuations can be de-
This relaxation is to a steady-state value determined by thecribed in terms of an effective temperature, which is shifted
pump diffusion coefficient and curvature-concentration coufrom the thermodynamic temperature by nonequilibrium ef-
pling. The pumping activity is then inhomogeneously distrib-fects due to pumping. These terms depend on the quantity
uted along the membrane surface. To see the physical consgyv!—w'), a measure of the degree of asymmetry in the
quences of this inhomogeneous distribution, consider @ositions of the force centers. We reiterate the observation of
fluctuation creating a region of positive curvature.Hfis ~ Mannevilleet al.in Ref.[28] that this asymmetry is essential
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for nonequilibrium effects to be visible in the membrane dy-sions on these and related matters. We also thank Y. Hat-

namics. walne for urging us to clarify the physical mechanisms
We find that the activity of the pumps within treable  underlying our resuilts.

regime appears teamoothenout height fluctuations in the

presence of the_ wall since height correlatiqns scale only APPENDIX
logarithmically with L for both tense and tensionless mem- _ N
branes. This smoothening out within the linear theory pre- 1. A note on the impermeability of the membrane

sumably competes with the possible enhancement of fluctua- | this section we present an argument, following Man-

tions, if any, which might arise in a theory that incorporatespeyjilie et al, to justify the assumption of membrane imper-
the effects of nonlinearities. \We have provided a physicaineapility. Had we incorporated permeation due to activity in
interpretation of this effect in this paper and obtained estiyyr calculations, active-permeative and active-hydrodynamic
mates for the appropriate collision length. We find that thisierms would appear ah,—k, (Ww'2—w'2)/85]f ¢ (A, is
collision length can be significantly larger than typical lengthihe permeation Coefﬁcie)q%zg]. The crossover Iengthpscale
scales for biological vesicles, indicating the relevance of thgrom the hydrodynamic to the permeative regime occurs
physical effects we study here to a complete description Ofyhenk, =87\, /w(w!—w!), i.e., |, = mw(w' —w')/dn\
the hydrodynamics of active pump-membrane systems. It if’w is the sizep of the pump With \,=10"2 m?/Ns, 7‘7’
important to note that this smoothening relies crucially on_ -3 kg/ms, andw=5x10"°m [‘)28], this crossover
the existence of curvature-concentration coupling terms, N8ength scale is estimated to be of the order of 1 cm. The
glected in previous work on the near-wall case. These resuligngih scales of concern to us are in the micron and submi-
suggest that earlier ones based on scaling arguments whigh,, rangd28]. Thus, at these length scales, effects due to
predicted arenhancemeni the roughness may need to be yermeation can be ignored. These arguments can be extended
reevaluated in the light of this work. to estimating the role of passive permeative vs hydrody-
We have also calculated the crossover funclisit and  namic modes of relaxation; we conclude that at the length

linearized mode structure in the presence of the wall. Whilgcajes of interest to us, the assumption of membrane imper-

the positional asymmetry in the placement of force Cemer?neability remains valid.

was crucial for active membrane fluctuations in bulk, we |, the presence of a wall, active-permeative terms would

point out that nonequmbrlum.effects are apparent even fc_"dominate ifA ,>G 2", This means that the length scale above

symmetrically placed pumps in the presence of a wall. Th'?/vhich permeation dominates igmdw!2/27x,. This length

unusual, although not totally unexpected, result does not aRs ~40 um when the membrane-wall dis’?andscl um

pear to have_ been noticed before. . . Hence, in the regimes of interest to us, permeation can be
We also find that the requirement of stability for active ignored and relaxation is purely hydrodynamic. Hence, we

membranes near a wall constraiHs the coefficient cou- assume\,= 0 to derive our results.

pling concentration with curvature, to be positive. This can

have interesting consequences. Consider two active mem-

1Y e 2. A modified model for active membranes
branes, one with positivel and the other with negativ,

o = o We present here results for a model in which proteins are
fluctuating in the bulk. Provided? for each lies in the |,cated asymmetrically across the bilayer with their centers
wmdovv_ of stability in the bulk, these membranes_ are st_a_bleof mass displaced above or below the bilayer midpéiee
ﬁow bring both close to a wall. The membrane with posmveFig_ 3. The head and tail of the pumps are then located at
H will remain stable. The fluctuations of the membrane withdistancesv, andws, respectively, from the midpoint of the
negativeH, however, will turn unstable; its final fate will be bilayer. Note that in this model, the up and down pumps are
decided by the nonlinear terms we have omitted from ourelated to each other by reflection along #¥0 line unlike
discussion. the model of Fig. 2. This model can be used to describe
Because our calculation is an explicitlipear one, we situations in which proteins are attached to planar bilayer
cannot address issues such as the relevance of such nonlinea@mbranes which are symmetric on both sides, unlike
terms. The arguments of Prost, Manneville, and Bruinsmayesicles in which the inner leaf and outer leaf need not be
which predict an anomalous roughening of active mem-ssymmetrically preferred by the protein.
branes near walls, rely on identifying the role of such non- When pumps are active on such a membrane in bulk, the
linear terms and estimations of their importance via scalingorce density due to the pumps acting on the fluid has the
arguments. It would be interesting to construct similar arguform
ments for the model studied here, particularly since our re-
sults in the linear case indicate that fluctuations of an active [pumpiuia=f[8(z—w)n! = 8(z+wg)n' = 8(z+w)n'
membrane near a repulsive wall cansb_noothenedh some I 5(z—ws)nl], (A1)
regimes, rather than roughened relative to the equilibrium

case. Further work along these lines is currently in progres§ here n' and n' are the local number of up and down

pumps, respectively. On repeating the calculations done in

Sec. V, we find that the component of the hydrodynamic
We are grateful to Sriram Ramaswamy for a critical read-velocity has the same form as shown in H§.7) with

ing of the manuscript as well as several enlightening discus® (k, ,w',w') replaced by Q'(k, ,w;,wg)=—eX%s(1
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+k, wo) +€4"(1+k, wy), which vanishes whemw,=ws (i.e., 1 <A
for symmetrically placed proteipsCorrelation functions and 7-;1:4 K — FQ(k, Wy ,wg) kf . (A3)
relaxation times can be read off from the corresponding ex- 8L Xo
pressions in Sec. V by identifying/ andw! with wg and
w,, respectively. For example,

(h* (k, ,Hh(k, b)) We note here that this identification is purely notational since

(w!,w') and wg,w,) physically represent different lengths
1 1 2072 in the two models.
keT Ty TTh 7o+ m When the calculations are repeated for such a model in

= the presence of a repulsive wall, we find that the hydrody-
47k, (7 D e namic velocity acquires an additional contribution from the
(A2) ¢ (total protein densityfield. In this linearized calculation
we assume that the compressibility associated with ¢he
where the quantities, *, 7, * have been defined earlie; **  field is very large and ignore its dynamics. However, we do
has the same form agl with k replaced byk.. The relax-  not expect this contribution to alter the long wavelength fluc-
ation time tuations of the active membrane near the wall significantly.
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