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Two-component fluid membranes near repulsive walls: Linearized hydrodynamics
of equilibrium and nonequilibrium states
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We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a
model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is
a simplified version of a recently proposed one@J.-B. Mannevilleet al., Phys. Rev. E64, 021908~2001!# for
nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps
incorporated in phospholipid egg phosphatidyl choline~EPC! bilayers. The pump-membrane system is mod-
eled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in
which one component, representing active pumps, is described in terms of force dipoles displaced with respect
to the bilayer midpoint. We first discuss the case in which such pumps are renderedinactive, computing the
mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby
wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two compo-
nents, in which the effects of curvature-concentration coupling are significant, above the threshold for phase
separation. We then discuss the fluctuations and mode structure in the steady state of active two-component
membranes near a repulsive wall. We find that proximity to the wallsmoothensmembrane height fluctuations
in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless mem-
branes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration
coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which ob-
tained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played
by such couplings may need to be reevaluated.

DOI: 10.1103/PhysRevE.66.031914 PACS number~s!: 87.16.Dg, 05.20.Jj, 05.40.2a
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I. INTRODUCTION

Amphiphilic molecules, in polar solvents such as wat
form symmetric bilayer membrane phases at sufficient c
centration@1–4#. Such membranes are typicallyfluid in na-
ture, with short-ranged positional order, although more co
plex forms of ordering are possible@5–7#. The equilibrium
conformations of such single-component membranes
governed by the energy cost for bending the bilayer, p
vided the surface tension can be neglected, as is the ca
the membrane is self-assembled@4,8,9#. Our understanding
of the static and dynamic properties of such sing
component membrane systems in equilibrium is now fa
detailed@3,10–17#.

More complex multicomponent membranes have a
been synthesized and studied@9,18–20#. Such membranes
are especially important in the biological context, since c
membranes are often usefully idealized as a bilayerfluid mo-
saiccomprised of over a hundred different types of lipid a
protein constituents@21,22#. Biological membranes, how
ever, often have additional complicating features: An und
lying network of cross-linked proteins anchored to the
layer and associated with the cell cytoskeleton typica
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lends such membranes a nonvanishing~although small! shear
modulus@22#. Another aspect, specific to the biological co
text, is the presence of nonequilibrium driving forces: A
important class of transmembrane proteins are the ‘‘
pumps,’’ molecules which consume energy derived from
enosine triphosphate hydrolysis, electrochemical gradie
or light, and undergo conformational changes. Such pum
maintain electro-osmotic potential gradients across the
membrane by controlling the flow of ions such as K1 and
Na1. Since energy must be supplied externally, the driv
of the pump is a process that occurs out of thermal equi
rium. Thus, the situation of active pumps diffusing in a flu
membrane matrix is an intrinsically nonequilibrium proble
whose behavior represents a class of nonequilibrium ste
states.

The appropriate statistical description of active
‘‘driven’’ biological membrane systems has attracted rec
experimental and theoretical attention@23#. It has been real-
ized that nonequilibrium behavior may underlie aspects
biomembrane dynamics@24,25#, previously attributed purely
to equilibrium thermal fluctuations, such as the ‘‘flicker
phenomenon in erythrocytes@26#. Recent micropipette ex
periments on light-activated bacteriorhodopsin pumps inc
porated in phospholipid~EPC! bilayers find that area fluctua
tions in such active membrane systems can
phenomenologically described in terms of an effective te
perature, which exceeds the true physical temperature b
to a factor of 2@27,28#. In these systems, the transition b
©2002 The American Physical Society14-1
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tween active and inactive states can be easily~and revers-
ibly! tuned, providing a remarkable window into the dyna
ics of steady states away from equilibrium@28–31#.

Analytical calculations which deal with the complex n
ture of a typical biological membranein toto are difficult, if
not impossible. We may, however, hope to gain useful insi
by working with simpler models. We idealize a typical bi
logical membrane here as composed of principallytwo dif-
ferent types of molecular constituents, the lipids, which c
stitute the bulk of the bilayer membrane, and the prote
which diffuse freely on the membrane surface. Such sim
lipid–pump protein systems can be reconstituted and stu
in vitro, as in the micropipette experiments referred to abo
Our results should apply, most directly, to such experime

The question we address in this paper is the followi
How are the fluctuations of such a two-component me
brane@32#, both in equilibrium and out of equilibrium, af
fected by the presence of a nearby repulsive wall? Fluc
tions of a single-component membrane bounded on one
by a repulsive wall have been considered in earlier w
@3,33#. More recently, a similar problem for active mem
branes has been studied in an influential paper by Prost
co-workers@29,30#, who suggest that steady-state fluctu
tions of nonequilibrium membranes near repulsive walls
be amplified substantially relative to the equilibrium cas
This amplification is studied using a scaling treatment wh
incorporates nonlinear effects. Our starting model diff
from theirs in several respects, in particular, in the way
describe activity, in our incorporation of curvatur
concentration coupling, as well as in our evaluation of
relative importance of permeative and hydrodynamic effe
at the length scales accessed by typical experimental pro
We study thelinearizedhydrodynamics of such active pump
membrane systems in this paper, ignoring the role of non
ear effects. We will describe the similarities as well as
differences in the results we obtain.

We answer the question posed above first through a
culation of the correlations and linearized mode structure
thermal equilibrium of a model impermeable two-compon
fluid membrane, incorporating hydrodynamic interactio
This amounts, in terms of the model for biological mem
branes discussed above, to assuming that the pump pro
are ‘‘passive’’ constituents of the membrane. While mo
vated here in a biological context, such models are also
ful outside this specific context. Physics similar to that d
scribed in the case where the pumps are rendered pa
should be generic to two-component systems compose
~i! a symmetric~lipid! constituent forming an up-down sym
metric bilayer phase in isolation, and~ii ! an asymmetric
~protein! constituent, in which either the shape of the m
ecule or its location with respect to the bilayer favors a lo
spontaneous curvature for the bilayer. For concreteness
will often use the terms lipid and protein when referring
constituents of types~i! and~ii !, following our earlier discus-
sion, but stress that the results obtained here in theequilib-
rium case are also applicable more generally.

For protein molecules which lack up-down symmetry, w
may distinguish between molecules oriented parallel to
local normal and those which are oriented antiparallel to
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normal. We label these proteins as1 and2 for convenience;
the relatively small flip-flop rate for protein transfer acro
leaves of the bilayer ensures that these labels are conse
across short and intermediate time scales. The difference
tween the local densities of1 and 2 proteins defines a
‘‘signed’’ protein density fieldc. To describe the incorpora
tion of such asymmetric proteins into the lipid bilayer, w
model the protein as a rigid rod of lengthw↑1w↓. The pro-
tein is taken to situate itself asymmetrically with respect
the bilayer midpoint; a sectionw↑ of the protein lies on one
side of the bilayer midpoint while a sectionw↓ lies on the
other side. This relatively simple model of the asymmetry
convenient for analytic computation.

To lowest order, the two-component character of t
membrane manifests itself via the existence of a curvatu
concentration coupling—fluctuations inc influence the
mean curvature in that region~see Fig. 1!. We will work with
balanced membranes for which^c&50. For inactive pumps,
corresponding to the equilibrium case, the curvatu
concentration coupling term in the free energy effective
shifts the bending rigidity of the membrane fromk to ke

5k2(kH̄)2/x0
21. HereH̄ is the coefficient coupling curva

ture to concentration andx0
21 is an inverse compressibility

@31#.
In closed vesicular structures found in biological contex

while the bilayer constituting the vesicle may be symmetr
chemical and physical environments within and outside
vesicle can differ considerably. Thus, a pump protein can
principle, distinguish the side of the bilayer exposed to
inner volume from the side which is exposed to the ou
volume. For a large enough vesicle, flat on the large len
scales of relevance to a hydrodynamic calculation, the pu
molecule can thus tellup from down, whereup anddownare
defined arbitrarily with respect to the average position a
orientation of the bilayer midpoint. As an extreme limit, w
may consider the case in which the pump molecules pre
entially insert always on the same~say up! side, so that a
section w↑ of the protein molecule always liesabove the
bilayer midpoint while a sectionw↓ lies below.

A recent study of active membranes works with th
model of the architecture of a membrane-pump system, m
eling activity in terms of dipole forces associated with t
ends of the pump, as we detail below@28#. The associated
forces may point either outward at the ends~up pumps! or
inward at the ends~down pumps!; see Fig. 2. In this model
up and down pumps are physically distinguishable. The m
results presented here are appropriate to this model.

Note that this distinction between ‘‘above’’ and ‘‘below
is artificial for strictly symmetric bilayer membranes,
which pump proteins may insert on either leaf of the bilay

FIG. 1. A schematic diagram of the two kinds of proteins, re
resented as up and down triangles. These affect the local curva
of the membrane by bending it towards or away from the lo
normal. The bilayer midplane lies atz50.
4-2
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TWO-COMPONENT FLUID MEMBRANES NEAR . . . PHYSICAL REVIEW E 66, 031914 ~2002!
with equal probability. In the Appendix, we discuss resu
for an alternative model, in which the protein attachme
respects the up-down symmetry of the bilayer; the cente
mass of the protein can be displaced either above or be
the bilayer midplane as shown in Fig. 3. The head and
distances from the bilayer midpoint are fixed atwl andws ,
respectively. In this model, up pumps and down pumps
physically indistinguishable; their nomenclature follow
from the side of the bilayer on which they are inserted.

We will present results fornonequilibriummembranes in
the bulk, in which case the pumps are active, and for the c
in which fluctuations of such an active membrane
bounded on one side by a repulsive wall. This study comp
ments results by Prost, Manneville, and Bruinsma fo
model in which curvature-concentration coupling is ignore
an effect explicitly incorporated in later work@31#. In the
active case, the pumps exert forces on the membrane an
surrounding fluid. Since these forces are internal forces, t
must cancel when integrated over the size of the pump@34#.

FIG. 2. The asymmetric dipole model used to describe the
tivity of the proteins. The force centers are points at distancesw↑

andw↓ from the bilayer midpoint. The centers of mass of the pum
are displaced above the bilayer midpoint. The superposed up
down triangles indicate the underlying shape asymmetry of the
different kinds of pumps.

FIG. 3. The asymmetric dipole model of the pumps describe
the Appendix. The centers of mass of the pumps are displa
above or below the bilayer midpoint. The distance of the furth
force center fromz50 is wl and the distance of the nearest for
center fromz50 is ws .
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Following Mannevilleet al. in Ref. @28#, we consider the
simplest model for pumps consistent with this requireme
the pumps are taken to be dipole force centers with posi
and negative force centers located asymmetrically with
spect to the midpoint of the bilayer.

Our other major assumptions are the following: We a
sume that our observations are conducted on scales such
the membrane may be considered to beimpermeableto the
solvent in which it is embedded. This assumption follow
from the work of Mannevilleet al., who observe that for
active terms, permeative effects can be neglectedvis-à-vis
hydrodynamic ones over a substantial range of length sc
upto microscopic ones. We derive our results under the
sumption that the active membrane is impermeable and
tend this assumption to the case when the membrane is in
passive state, to smoothly interpolate between results in
two regimes.~In the Rouse or free-draining limit, where th
membrane dynamics decouples from that of the fluid,
membrane is implicitly permeable.! We take the solvent to be
incompressible and work at a small Reynolds number,
glecting the inertia of the fluid. We use linearized equatio
of motion for the hydrodynamic velocity field, correspondin
to the Stokes limit of the Navier-Stokes equations.

We now summarize our principal results. Forequilibrium,
impermeable, two-component membranes bounded on
side by a wall placed at a distanced from the membrane
plane, we obtain the following modified mode structure
leading order:

v1'G~sk'
2 1kek'

4 !, v2'Dk'
2 . ~1.1!

In our notation,D is the diffusion coefficient of the protein
on the membrane,s the surface tension of the membrane,k
the bending rigidity of the membrane, andh the viscosity of
the fluid. Here,

G~k' ,k'd!;H d3k'
2 /12h if k'!1/d

1/4hk' if k'@1/d
~1.2!

is a ‘‘crossover function,’’ which describes how membra
fluctuations interpolate between a regime where physical
teractions between the membrane and the wall canno
neglected, and a regime where such fluctuations do not
the presence of the wall@33#. In thek'@1/d limit, the above
result reduces to a derivable one in the bulk case, as is ph
cally sensible.

To study nonequilibrium membranes we model activ
pumps, following Mannevilleet al., as asymmetric force di-
poles, with force centers located at distancesw↑ above the
bilayer midpoint andw↓ below the bilayer midpoint. These
distances are, in general, unequal. The magnitude of
force exerted at each of these force centers isf. The pumps
diffuse on the membrane and are characterized by a mob
L.

In the presence of a wall, for nonequilibrium membran
it has been argued that static height fluctuations areamplified
and an interesting speculation is that such an amplifica
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SANKARARAMAN, MENON, AND KUMAR PHYSICAL REVIEW E 66, 031914 ~2002!
may, in fact, speed up the process of membrane fusion w
two nonequilibriummembranes are brought close togeth
@27#. When the wall is at a distanced from the membrane
our calculation yields~for a tensionless membrane!

v1'
fG awkH̄

x0
21

k'
2 1Gkek'

4 ,

v2'Dk'
2 1

kH̄~kH̄Gk'
2 2 fG aw!

x0
21

k'
2 , ~1.3!

whereG aw is the crossover function,

G aw~k' ,d,w↑,w↓!;H dw↓2k'
2 /4h if k'!1/d

V~k' ,w↑,w↓!/4hk' if k'@1/d.
~1.4!

V(k' ,w↑,w↓) is proportional to the degree of asymmet
(w↓2w↑). In a regime where fluctuations feel the wall, no
equilibrium effects do not depend on the asymmetry fac
but only on w↓, as seen above. Here again, curvatu
concentration coupling plays a crucial role in the manifes
tion of nonequilibrium effects in the linearized mode stru
ture.

We find that in the presence of the wall, the first term
v1 is the most important one since it is of orderO(k'

4 ). The
existence of this mode depends crucially on the presenc
both activity and curvature-concentration coupling. It will b
shown later in this paper that this mode causes active m
branes near walls to relax faster than their equilibrium co
terparts and causes a smoothening of membrane fluctuat
in the presence of a wall, the roughness oftensionless, active
membranes averaged over a patch of sizeL3L, ^h2(L)&,
scales as ln(L) instead ofL2. Thus the wall acts tosmoothen
active membrane fluctuations in a tensionless membran
inducing an apparent surface tension. This result is a pu
nonequilibrium one, since the apparent surface tension v
ishes when the strength of active forces is set to zero. It
relies crucially on the existence of a curvature-concentra
coupling, since the apparent surface tension also vani
when the curvature and concentration fields are decoup
We show that this effect can be understood in terms of
dynamics of the fast relaxingc field, which drives the heigh
field h(r' ,t) via activity and curvature-concentration co
pling.

The outline of this paper is as follows: Section II d
scribes our basic coarse-grained free energy and review
calculation of the static properties of a two-component me
brane with curvature-concentration coupling. In Sec. III
the free-draining approximation~Rouse model! is used to
discuss the dynamics. In Sec. III B, we incorporate the
fects of the hydrodynamic velocity field of the solvent. Se
tion IV describes the mode structure in the presence of a
for the equilibrium problem. In Sec. V, we discuss the mo
structure and correlation functions of active two-compon
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membranes. Section VI discusses how these properties
modified by the presence of a wall. In Sec. VII, we summ
rize the conclusions of this paper. The Appendix discus
the details of an alternative model for active two-compon
membranes, with up-down symmetry.

II. STATICS

We model the membrane as an infinitesimally thin tw
dimensional surface embedded in three-dimensional sp
Points on this surface are specified by a three-dimensio
vector R(ũ), with componentsRi(ũ), i 51, . . . ,3. We use
the Monge gauge, valid for nearly flat surfaces, in which
surface is specified by its height above a two-dimensio
flat plane. This plane is parametrized via Euclidean coo
nates, i.e., ũ5(x,y)[r' ; R(r')5„x,y,h(x,y)…. In this
gauge, the curvature isH52¹2h, to lowest order.

The number densities of the lipid molecules,1 proteins,
and2 proteins are specified through fieldsr, , r1(ũ,t), and
r2(ũ,t), respectively. These are the physical densities of
lipids and proteins on the membrane. The projections
these densities on thex-y plane are obtained by multiplying
the physical density fields by the metric factorA11(“h)2.
To lowest order in gradients ofh, physical densities and pro
jected densities coincide. The scalar fieldsf(ũ,t) and
c(ũ,t) are defined by f(ũ,t)5r1(ũ,t)1r2(ũ,t) and
c(ũ,t)5r1(ũ,t)2r2(ũ,t).

The free energy for the membrane-protein system cons
of a part arising from protein and lipid densities~the matter
part! and another which arises as a consequence of m
brane fluctuations about the flat state. Given equilibriu
concentrations of the lipid and protein (r0),

^f(ũ,t)&5^r1(ũ,t)1r2(ũ,t)&5f0 , ^c(ũ,t)&5^r1(ũ,t)
2r2(ũ,t)&5c0 and fixingr.r0 andf.f0, the appropri-
ate gauge-invariant free energy of the membrane with as
metric proteins is

F5E d2ũAgFs1
1

2
x0

21~c2c0!2G
1

1

2
kE d2ũAg~H2H0!2, ~2.1!

wheres is the surface tension andk is the bending rigidity.
To lowest order we takeH05H̄c. To leading order in gra-
dients ofh, we have

F5
1

2E d2r'@k$¹2h~r' ,t !%21s$“h~r' ,t !%2

22H̄kc~r' ,t !¹2h~r' ,t !1x0
21c~r' ,t !2#, ~2.2!

yielding a local force density off(r')52dF/dhuc . The lo-
cal force density is evaluated at constant density@35#.
4-4
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The partition function is@36#

Z5E D@h#D@c#e2bF[h,c] , ~2.3!

which yields, on integrating out thec field, an effective free
energy for the height fieldFe f f@h#,

Fe f f@h#5
1

2 (
k'

~sk'
2 1kk'

4 !uh~k'!u22
~kH̄ !2

x0
21

k'
4 uh~k'!u2.

~2.4!

The equipartition theorem yields the equilibrium correlati
function for the height field fluctuations~about the equilib-
rium, flat, ‘‘mixed’’ phase! as

^h* ~k'!h~k'!&5
kBT

~sk'
2 1kek'

4 !
, ~2.5!

whereke5k2(kH̄)2/x0
21. The asymmetric components a

to reduce the rigidity modulus fromk to ke as a consequenc
of curvature-concentration coupling@31#, an effect easily un-
derstood on physical grounds. We assume thatH̄ is small
enough to keepke positive, in which case the membrane
linearly stable. Instabilities arising at equilibrium due
large values ofH̄ have been discussed in@37#.

III. MODE STRUCTURE IN THE BULK

We now study the dynamics of a two-component me
brane with curvature-concentration coupling and suspen
in a solvent. We will first present results in the Rouse mo
limit in which the background fluid drains freely through th
membrane, and effects due to the hydrodynamics of
background fluid velocity field can be ignored@38#.

A. Rouse model

In this model the fluid velocity field decouples from th
membrane height field andc. The membrane is implicitly
permeable and the height field fluctuations are governed
balance between the elastic forces and local~permeative!
friction. An equation of the form

] th~r' ,t !52G
dF

dh
1 f m , ~3.1!

follows, whereG is a kinetic coefficient andf m is a thermal
equilibrium noise whose statistics ensures that the st
height-height correlation function is Eq.~2.5!.
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The proteins diffuse freely on the surface of the me
brane. Sincec is locally conserved, it obeys an equation
continuity of the form

] tc~r' ,t !5L¹2
dF

dc
1“•fc , ~3.2!

with L5D/x0
21, D is the diffusion coefficient of the pro

teins on the membrane. A contribution due to the in-pla
current of the pumps has been dropped; this is typica
small and can be neglected to linear order. This term cont
utes if we go beyond the strictly linear treatment by repla
ing c2 by ^c2&, yielding a convective term which gives ris
to waves whose speed is independent of the wave ve
@23,31#. The last term is a conserving Gaussian noise w
^fc(r' ,t)&50 and correlations ^ f c i(r' ,t) f c j (r'8 ,t8)&
52LkBTd i j d(r'2r'8 )d(t2t8).

Equations~3.1! and ~3.2! can be written as

] tS h~k' ,v!

c~k' ,v!
D 52S G~sk'

2 1kk'
4 ! GkH̄k'

2

LkH̄k'
4 Lx0

21k'
2 D

3S h~k' ,v!

c~k' ,v!
D 1S f m

ik'•fc
D . ~3.3!

Solving these coupled equations yields

^h* ~k' ,v!h~k' ,v!&

5
^ f mf m&~v21tc

212!12~GkH̄ !2LkBTk'
6

@2v21th
21tc

212LG~kH̄ !2k'
6 #21v2~tc

211th
21!2

,

~3.4!

whereth
215G(sk'

2 1kk'
4 ) andtc

215Lx0
21k'

2 .
On integrating overv, this correlation function should

reduce to the same form as Eq.~2.5!. This constrains the
equilibrium thermal noise correlations to be the following

^ f m~r' ,t ! f m~r'8 ,t8!&52GkBTd~r'2r'8 !d~ t2t8!.
~3.5!

In addition, we imposê f m(r' ,t)&50.
To obtain the mode structure, we drop the noise terms

Eq. ~3.3! and find the eigenvalues of the matrix. This yiel
v1 ,v25
1

2
@G~sk'

2 1kk'
4 !1Dk'

2 #6
1

2
$A@G~sk'

2 1kk'
4 !1Dk'

2 #224DGk'
2 ~sk'

2 1kek'
4 !%.
4-5
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In the absence of curvature-concentration coupling th
modes decouple and arev1 ,v25G(sk'

2 1kk'
4 ), Dk'

2 , the
dispersive modes of a tense membrane@39#. For tensionless
membranes, the presence of curvature-concentration
pling modifies the mode structure to

v1'Gkek'
4 ,v2'Dk'

2 1
~kH̄ !2

x0
21

Gk'
4 . ~3.6!

B. Zimm model

Next, we examine the effect of solvent hydrodynamics
the dynamical correlation functions of the protein dens
field and the membrane height field@38#. Since no externa
forces act on the~fluid1membrane1proteins! system, mo-
mentum conservation requires@40,41#

] tgi52“ jp i j , ~3.7!

whereg is the momentum density andp i j is the stress tensor
The stress tensor takes the formp i j 5Pd i j 1rv iv j
2h(“ iv j1“ jv i)1Si j , where v(r ,t) is the fluid velocity,
P(r ,t) is the pressure field, andSi j describes the contribution
to the stress tensor arising from membrane conformat
~the ¹2 in the above equation is evaluated in three dim
sions!. In the Stokes limit, the nonlinear term can b
dropped. At low Reynolds number, we neglect the iner
term on the left-hand side of Eq.~3.7! leading to“ jp i j
50, and thus the equation governing the hydrodynamic
locity field,

h¹2v~r ,t !2“P~r ,t !2F~r ,t !1fh~r ,t !50. ~3.8!

F(r ,t) is the force acting on the fluid due to membra
stressesSi j and fh(r ,t) is the equilibrium thermal noise
present in the bulk of the fluid. This noise obeys^fh(r ,t)&
50 @28,29# and is related to the viscosity via the fluctuatio
dissipation theorem,

^ f hi~r ,t ! f h j~r 8,t8!&52kBTh$2d i j ¹
21] i] j%

3d~r2r 8!d~ t2t8!, ~3.9!

where (i , j ) index the components of the force. Equatio
~3.8! are to be solved together with the incompressibil
condition

“•v~r ,t !50 ~3.10!

to obtain the mode structure of an impermeable tw
component membrane in the presence of an incompres
solvent@42#.

We employ a useful convention due to Seifert in which
basis spanned by thez component and the longitudinal an
transversein-plane components of the velocity is used@3#.
~This convention will be useful further on in this paper wh
we discuss membrane fluctuations in the presence of a
fining wall.! We solve the above equations to obtain t
transverse (t), longitudinal (l ), and z components of the
fluid velocity in terms of thet, l, and z components of the
force F acting on the fluid@43#. The t and l components of
03191
se
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-
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the velocity lie in the plane of the membrane and are perp
dicular and parallel tok' , the wave vector describing fluc
tuations of the membrane. Some algebra yields these com
nents as@3#

vz~k' ,z!5
1

4hk'
E

2`

`

dz8e2k'uz82zu@~11k'uz2z8u!

3Fz~k' ,z8!1 ik'~z82z!Fl~k' ,z8!#,

v l~k' ,z!5
1

4hk'
E

2`

`

dz8e2k'uz82zu@~12k'uz2z8u!

3Fl~k' ,z8!1 ik'~z82z!Fz~k' ,z8!#,

~3.11!

v t~k' ,z!5
1

4hk'
E

2`

`

dz8e2k'uz82zu2Ft~k' ,z8!.

~3.12!

Note that the transverse components can be ignored s
they do not couple to the other components. We can n
calculatevz(k',0) by supplementing the above equatio
with boundary conditions.

In the absence of permeation the membrane is adve
by the fluid. The velocity of any point on the membrane
thez component of the velocity of the fluid at that point@28#.
The equation of motion for the height field of an imperm
able membrane is therefore

] th~r' ,t !5vz~r',0,t !, ~3.13!

wherevz(r',0,t) is the velocity of the surrounding fluid a
the mean position of the membrane. The force acting on
fluid is of the form

F~k' ,z!5d~z!F2
dF

dh
ẑ1Fl

mk̂'G , ~3.14!

whereFl
m is the longitudinal component of the force actin

on the fluid due to the membrane. The elastic force den
due to the membrane is2dF/dhẑ . We solve forvz(k',0)
using Eqs.~3.11!, together with the boundary condition tha
the membrane is incompressible@35#, i.e., the in-plane diver-
gence of the velocity field vanishes at the membrane. T
implies that v l(k',0)50. This boundary condition gives
Fl

m50, yielding

vz~k',0!52
1

4hk'

dF

dh
. ~3.15!

The bulk thermal noise present in the fluid also contributes
vz(k',0). This contribution is denoted byf z , with

f z~k',0!5E dkz

2phk2 S d jz2
kjkz

k2 D @ f h~k,t !# j . ~3.16!
4-6
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We can use the noise correlation function given in Eq.~3.9!
to show that the noisef z has zero mean and that its varian
in Fourier space is 2kBT/4hk' .

Finally, Eq. ~3.13! becomes

] th52
1

4hk'

dF

dh
1 f z~k',0,t !. ~3.17!

The density difference field obeys Eq.~3.2!. Equations~3.13!
and ~3.2! can then be written as
e
ib

e
i

le
in

tr
by
ha
c-
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] tS h~k' ,v!

c~k' ,v!
D 52S sk'

2 1kk'
4

4hk'

kH̄k'
2

4hk'

LkH̄k'
4 Lx0

21k'
2
D S h~k' ,v!

c~k' ,v!
D

1S f z~k' ,v!

ik'•fc
D . ~3.18!

Solving these equations gives
^h* ~k' ,v!h~k' ,v!&5
~2kBT/4hk'!~v21tc

212
!1@kBTL~kH̄ !2/8h2#k'

4

$2v21th
21tc

212@L~kH̄ !2/4h#k'
5 %21v2~tc

211th
21!2

. ~3.19!
opic
The parameters appearing in the above equations are

th
215

1

4hk'

~sk'
2 1kk'

4 !, tc
215Lx0

21k'
2 . ~3.20!

Integrating this result overv recovers for us the equal tim
correlation function for height fluctuations about the equil
rium, flat, mixed phase,

^h* ~k' ,t !h~k' ,t !&5
kBT

~sk'
2 1kek'

4 !
, ~3.21!
-

as expected. The roughness of the height field at macrosc
length scales L, defined through ^h2(L)&
5*1/L

1/ad2k'^h(k')h* (k')&, scales as

^h2~L !&5H kBT

ke
L2 if s50

kBT

s
ln~L/a! if sÞ0,

~3.22!

wherea is a microscopic cutoff length.
The mode structure is then
v1 ,v25
1

8h
~sk'1kk'

3 14hDk'
2 !6

1

8h
@A~sk'1kk'

3 14hDk'
2 !2216hD~kek'

5 1sk'
3 !#.
ure

re-
a-

nse-

the
to
of

e
ne-

on

to
In the absence of curvature-concentration coupling,v1 ,v2

5(sk'1kk'
3 )/4h,Dk'

2 , i.e., the decoupled modes of th
membrane height field and the protein concentration field
the presence of hydrodynamic correlations. For tension
membranes with nonzero curvature-concentration coupl
the modes are

v1'
ke

4h
k'

3 , v2'Dk'
2 1

~kH̄ !2

4hx0
21

k'
3 . ~3.23!

IV. MODE STRUCTURE IN THE PRESENCE OF A WALL

Consider a fluid bilayer membrane with shape asymme
constituents, suspended in a fluid bounded on one side
wall. Our model for the membrane-pump system follows t
of Mannevilleet al. In our coordinates, the membrane flu
tuates about thez5d plane and the wall is atz50. The
n
ss
g,

ic
a

t

membrane is kept at distanced from the wall by a repulsive
interaction with the wall and a suitable external press
which prevents it from floating away into the bulk.

The relaxation rate of an equilibrium membrane is
duced near a wall; in tandem, the equilibrium noise fluctu
tions are required to have a reduced amplitude as a co
quence of the fluctuation-dissipation theorem@29#. On short
length scales, however, membrane fluctuations do not see
wall, and the height-height correlation function is identical
that in the bulk. This can be used to determine the form
thermal correlation functions in the presence of the wall.

We work in the linear regime wherêh2(Lc)&'d2, defin-
ing a collision lengthLc . Beyond this length the membran
senses the presence of the wall, and the nonlinearities
glected in our treatment become important; 1/Lc is the small-
est wave vector above which the linearization conditi
uh(r' ,t)u!d is valid. From Eq.~3.22! we can estimate the
collision length of an equilibrium membrane near a wall
be
4-7
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Lc~d!5HA ke

kBT
d if s50

a exp~sd2/kBT! if sÞ0.

~4.1!

We now solve Eq.~3.8! to obtain the velocity of the fluid
at the position of the membrane. The membrane and wall
introduced in Eq.~3.8! as external forces acting on the flui
imposing the required boundary conditions. The incompre
ibility of the fluid is used to solve for the components of t
velocity in terms of the components of the external force

We express the components of the velocity in t
‘‘mixed’’ basis of Seifert@3# as before. The force exerted b
the membrane and wall on the fluid is of the form@3#

F~k' ,z!5d~z2d!F2
dF

dh
ẑ1Fl

mk '̂G1d~z!@Fz
wẑ1Fl

wk '̂,

~4.2!
he
-
e.
u

ilib
m

fo
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whereFz
w andFl

w are thez and longitudinal components o
the force exerted by the wall on the fluid atz50. The quan-
tities Fl

m , Fz
w , andFl

w can be evaluated using the bounda
conditions: all components of the velocity should vanish
the wall ~no-slip boundary condition! @41#. This imposes

vz~k',0,t !5v l~k',0,t !5v t~k',0,t !50. ~4.3!

These conditions, together with membrane incompressib
@v l(k' ,d,t)50#, provide the boundary conditions for th
velocity field of the fluid at the membrane. This give
vz(k' ,d,t)52GdF/dh. The equation of motion for the
height field is then obtained from Eq.~3.13! @33#,

] th~k' ,t !52GdF

dh
1 f z̃~k' ,d,t !, ~4.4!

where
G~k' ,k'd!5
1

4hk'
S 2@sinh2~k'd!2~k'd!2#

sinh2~k'd!2~k'd!21k'd1sinh~k'd!cosh~k'd!
D .H d3k'

2 /12h if k'!1/d

1/4hk' if k'@1/d.
~4.5!
We note that the term for the conditionk'!1/d is incorrect
for arbitrarily small wave vectors. The relevant cutoff is t
inverse of the collision lengthLc since linearized calcula
tions are not valid at wave vectors smaller than this valu

The contribution to the velocity field at the membrane d
to the noise in the fluid in the presence of the wall isf z̃.
Following the procedure used in the derivation of Eq.~3.18!,
we get
e

] tS h~k' ,v!

c~k' ,v!
D 52S G~sk'

2 1kk'
4 ! G~kH̄k'

2 !

LkH̄k'
4 Lx0

21k'
2 D

3S h~k' ,v!

c~k' ,v!
D 1S f̃ z~k' ,v!

ik'•fc
D . ~4.6!

This matrix equation is solved to yield
^h* ~k' ,v!h~k' ,v!&5
^ f̃ zf̃ z&~v21tc

212!12kBTL~GkH̄ !2k'
6

@2v21th
21w

tc
212GL~kH̄ !2k'

6 #21v2~tc
211th

21w!2
, ~4.7!
the

ht

s
on-

ic
for
whereth
21w5G(sk'

2 1kk'
4 ).

The hydrodynamics of the solvent cannot change equ
rium correlation functions. Thus, demanding that equal ti
correlations of theh field are the same as in Eq.~3.21!, we
obtain the noise correlation function off̃ z as

^ f̃ z~k' ,t !&50, ~4.8!

^ f̃ z~k' ,t ! f̃ z~k'8 ,t8!&52kBTG~k' ,k'd!d~k'1k'8 !d~ t2t8!.
~4.9!

Note that this reduces to the noise correlation function
-
e

r

the equilibrium bulk noise whenk'@1/d, i.e., when the
membrane fluctuations are not significantly affected by
wall ~see Sec. III!.

We note here that the equation of motion of the heig
field can be derived in the limit 1/Lc!k'!1/d by directly
imposing impermeability as in@29#. Since the membrane i
impermeable, the height field is conserved and obeys a c
tinuity equation] th52“'• j h . The height ‘‘current’’ can be
calculated from the lubrication approximation asj h5
(2d3/12h)“'P, whereP is the pressure due to the elast
forces and the noise. Using the appropriate expressions
these terms, we recover the equation for the height@Eq.
~4.4!# in the close to the wall limit.
4-8
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The eigenmodes follow from Eq.~4.6!,

v1 ,v25
1

2
~Dk'

2 1sGk'
2 6kGk'

4 !1
1

2

3@A~sGk'
2 1Dk'

2 1kGk'
4 !224GD~s1kek'

2 !k'
4 #.

In the absence of curvature-concentration coupling
modes corresponding to the hydrodynamic relaxation o
two-component membrane near a wall are recove
v1 ,v25G(sk'

2 1kk'
4 ),Dk'

2 . For membranes with
curvature-concentration coupling, the modes are modifie

v1'G~sk'
2 1kek'

4 !, v2'Dk'
2 1G~kH̄ !2

x0
21

k'
4 .

~4.10!

It is easy to see that these reduce to the expressions de
in the bulk case, in the limit in which membrane fluctuatio
are unaffected by the wall.

V. NONEQUILIBRIUM MEMBRANES:
MODE STRUCTURE IN BULK

We now discuss the dynamic correlations and mode st
ture of an impermeable two-component membrane with
tive force centers, when placed far away from confini
walls. For inactive force centers, the static properties of s
a system are given by the free energy of Eq.~2.2!. However,
in the presence of nonequilibrium driving forces, thermod
namic restoring forces must be supplemented by additio
terms. These are discussed briefly here.

First, we must account for nonequilibrium forces. In t
context of the membrane-pump system, these arise due t
action of the pumps. However, since pumping refers
forces internal to the system, the force density exerted on
whole system~membrane1 pump1 solvent! must integrate
to zero on length scales comparable to the pump size
simple representation of this requirement idealizes the pu
as two force centers of opposite sign but equal magnit
separated by a distancew↑1w↓ and embedded in the bilaye
Such a ‘‘force dipole’’ representation was introduced in R
@28# and will represent an important part of our discuss
here.

Second, we must account for the nonequilibrium nature
the noise present in the fluid due to the switching on or off
the pumps. For simplicity, we assume that this noise isd
correlated. Such an assumption corresponds to a co
graining in time across the typical pump ‘‘dead’’ time whic
separates two pumping events. The nonequilibrium ac
noise can now be absorbed into the correlation function
the equilibrium noise@Eq. ~3.9!#. However, note that the
‘‘temperature’’ which appears in this correlator is not t
thermodynamic temperature. To smoothly interpolate to
equilibrium case, we must redefine this temperature as
effective temperature, which becomes the true thermo
namic temperature in the absence of activity.

Several of the results in this section overlap with those
Mannevilleet al. ~Ref. @28#!, in which the effects of perme
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ation and curvature induced activity on the dynamics of
active membrane in bulk are considered. In our model
assume impermeability from the outset and neglect the
fects of curvature induced activity. Such a minimal mod
makes the calculation of the correlation functions of a wa
bounded active membrane more tractable and transpare

We begin by writing the equations of motion for the va
ous fields. The fluid is incompressible and hence obeys
~3.10!. Since no external forces act on the fluid1membrane
1proteins system, momentum is conserved@40,41# and Eq.
~3.7! holds. The momentum current tensorp i j is then

p i j 5Pd i j 1rv iv j2h~“ iv j1“ jv i !1Si j 1Ai j , ~5.1!

wherev(r ,t) is the three-dimensional fluid velocity,P(r ,t) is
the three-dimensional pressure field.Si j is the contribution to
the stress tensor due to membrane conformations andAi j is
the contribution from the active pumps. Equations~3.8! and
~3.10! can be solved as before for the transverse (t), longi-
tudinal (l ), andz components of the fluid velocity, in term
of the t, l, andz components of the forceF(r ,t) acting on the
fluid due to membrane and pump stresses. The transv
components will be ignored as before;fh(r ,t) represents the
thermal noise present in the bulk of the fluid.

We can now calculatevz(k',0,t) by solving the equations
of motion with appropriate boundary conditions. The equ
tion of motion for the height field in the absence of perm
ation is ] th(r' ,t)5vz(r',0,t), wherevz(r',0,t) is the ve-
locity of the surrounding fluid at the mean position of th
membrane. The membrane does not feel the forces from
pumps directly because of the absence of permeation
only via the forces the pumps exert on the fluid@28,29#. The
contribution of the bulk equilibrium thermal noise present
the fluid to thez component of the fluid velocity atz50 is
f z . The statistics off z have been discussed earlier~see Sec.
III !. The density difference field obeys the diffusion equati
Eq. ~3.2!. As in the equilibrium case, we work in the linear
stable regime.

The membrane fluctuates aboutz50. The force exerted
by the membrane and pumps on the fluid is of the form

F~k' ,z8!5d~z8!F2
dF

dh
ẑ1Fl

mk̂�G1 f pump-f luidẑ.

~5.2!

The force f pump-f luid is modeled as a dipolar force densi
with force centers located asymmetrically about thez50
plane,

f pump-f luid5 f c~r' ,t !@d~z82w↑!2d~z81w↓!#, ~5.3!

wheref sets the scale for the active force.
We again solve for the unknown coefficientFl

m using
membrane incompressibility. This imposesv l(k',0,t)50 in
Eq. ~3.11!. The hydrodynamic velocity obtained atz50 us-
ing Eq.~3.11! enters in the equation of motion for the heig
field:
4-9
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] th~k' ,t !5
1

4hk'
F2

dF

dh
1 f c~k' ,t !V~k' ,w↑,w↓!G

1 f z~k',0,t !, ~5.4!

where

V~k' ,w↑,w↓!52e2k'w↓
~11k'w↓!1e2k'w↑

~11k'w↑!
~5.5!

5
k'

2

2
~w↓22w↑2!1

k'
3

3
~w↓32w↑3!1•••.

~5.6!

Note thatV(k' ,w↑,w↓) vanishes whenw↑5w↓, implying
that an asymmetry in the position of the force centers ab
and below the membrane midplane is needed for a non
active ~nonequilibrium! force. The equations of motion are

] tS h~k' ,v!

c~k' ,v!
D 52S sk'

2 1kk'
4

4hk'

kH̄k'
2 2 f V~k' ,w↑,w↓!

4hk'

LkH̄k'
4 Lx0

21k'
2

D
3S h~k' ,v!

c~k' ,v!
D 1S f z~k' ,v!

ik'•fc
D . ~5.7!

The correlation function for the height fluctuations of an a
tive membrane~about the flat, stable, steady-state phase! is
then

^h* ~k' ,t !h~k' ,t !&5
kBT

4hk'

3

S tc
211th

212ta
211

f 2V2

4hk'x0
21D

~tc
211th

21!~th
21e1ta

21!
,

~5.8!

where the quantitiestc
21 ,th

21 have been defined earlier.th
21e

has the same form asth
21 with k replaced byke . The relax-

ation time

ta
215

1

4hk'

kH̄

x0
21

f V~k' ,w↑,w↓!k'
2 . ~5.9!

We discuss the positivity of the right-hand side of Eq.~5.8!
after discussing the mode structure of the system. From
equal time correlation function we can calculate the quan
^h2(L)&. To lowest order we find
03191
e
ro

-

he
y

^h2~L !&5kBTL2Y Fke2
kH̄Pw

x0
21 G ~5.10!

for tensionless membranes and

^h2~L !&5
kBT

s
ln~L/a! ~5.11!

for tense membranes.P5 f (w↑22w↓2)/2w, wherew is the
size of the pump, represents the force dipole energy. I
estimated to be a fewkBT @28#. These results imply that on
large length scales, pumping activity does not change
roughness of equilibrium, tensionless membranes but sh
the temperatureat lowest order to

Te f f5TF11
kH̄Pw

kex0
21 G . ~5.12!

For tense membranes, both roughness and effective temp
ture are not affected by nonequilibrium effects at large len
scales since the divergence of the height correlation func
with system size remains logarithmic.

In the stable regime Eq.~5.10! is positive, as discusse
later in this section. The correlation function in Eq.~5.10! is
calculated from the lowest-order diffusive terms. Mannevi
et al. @28# calculate an identical correlation function butne-
glect these diffusive terms in favor of higher-order terms
the grounds that the diffusion constant is small in the phy
cal situation. For this reason the effective temperature
calculate in Eq.~5.12! is not the effective temperature tha
Mannevilleet al. calculate and compare with experiment.

The height correlation functions we calculate in our li
earized approach@Eqs. ~5.10! and ~5.11!# show that the
roughness of an active fluid membrane is unchanged in
bulk. The calculation of Ref.@29# obtains an enhance
roughening. The reason is the different nature of the fo
densities used in both the calculations. Prostet al. consider a
model in which the membrane feels the activity of the pum
only as a consequence of permeation. In our calculation,
~5.4! written as a Langevin equation is

] th~k' ,t !1th
21h~k' ,t !52

~kH̄k'
2 2 f V!

4hk'

c1 f z .

~5.13!

We assume that the pump is always in the active state o
the time scales of our interest. The forces on the right-h
side of the above equation arise from three sources: an el
part ~due to the curvature-concentration coupling term in
free energy!, an asymmetric dipole part~from the activity of
the pumps!, and the thermal noise from the fluid. Since t
membrane is impermeable it does not feel the active for
or thermal noise directly but only via the fluid. We emph
size that in the present model the membrane senses a
forces and thermal noise even whenlp50, in contrast to the
model of Prostet al. @29#.

The modes are
4-10
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v1 ,v25
1

8h
~sk'14hDk'

2 1kk'
3 !6

1

8h
@A~sk'14hDk'

2 1kk'
3 !2216h~Dkek'

5 1Dsk'
3 1 f H̄kLVk'

3 !#.
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In the absence of curvature-concentration coupling, none
librium effects vanish to lowest order and the modes
those for an equilibrium membrane with hydrodynamic
teractions v1 ,v25(sk'1kk'

3 )/4h,Dk'
2 . When s50,

curvature-concentration coupling modifies this mode str
ture to

v1'
ke

4h
k'

3 1
f kH̄~w↓22w↑2!

8hx0
21

k'
3 ,

v2'Dk'
2 1

kH̄@2kH̄2 f ~w↓22w↑2!#k'
3

8hx0
21

. ~5.14!

We see that to lowest order, nonequilibrium effects are
parent only at nonzero curvature-concentration coupling.
also observe that the nonequilibrium terms vanish whenw↓

5w↑.
For stability we require that all the eigenmodes of t

system must decay. This means thatv1 andv2 are positive.
To the order above, this imposeske /k21,H̄Pw/x0

21

,ke /k. If H̄P is such that this condition is satisfied, the
the system is stable independent of the sign of this param
Typical experimental values such ask510kBT, kH̄
5wkBT, x0

215w2kBT, f 510212 N satisfy the above condi
tions @44#.

VI. NONEQUILIBRIUM MEMBRANES: MODE
STRUCTURE IN THE PRESENCE OF A WALL

We now study the effect of a wall located atz50 on the
fluctuations of an active membrane located atz5d. The
forces exerted on the fluid by the membrane, pumps, and
wall are now given by
ns

is
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F~k' ,z8!5d~z82d!F2
dF

dh
ẑ1Fl

mk̂�G1 f c~r' ,t !

3@d~z82d2w↑!2d~z82d1w↓!# ẑ1d~z8!

3@Fz
wẑ1Fl

wk̂�#. ~6.1!

We need to determine the unknown coefficientsFl
m , Fz

w ,
andFl

w . The following three boundary conditions are use
following Eqs.~3.11!:

vz~k',0,t !5v l~k',0,t !5v l~k' ,d,t !50. ~6.2!

These boundary conditions impose the following constrain
~i! vz(k' ,z50)50, i.e., thez component of the velocity
vanishes at the wall,~ii ! v l(k' ,z50)50, i.e., thel compo-
nent of the velocity vanishes at the wall, and~iii ! v l(k' ,z
5d)50, i.e., the membrane located atz5d is incompress-
ible. We neglect the tangential component as before.

The values of the three unknown coefficients are obtai
on solving the three simultaneous equations@Eq. ~3.11!# to-
gether with the three boundary conditions. These values
then be used to obtain the velocity of the fluid at the locat
of the membrane. The velocity thus obtained has a part a
ing from equilibrium elastic forces and a part arising fro
nonequilibrium active forces. These can be separated
yielding the equation of motion for the height field as

] th~k' ,t !5vz~k' ,d,t !52GS dF

dh D1G aw~ f c!1 f̃ z~k' ,t !,

~6.3!

whereG is the usual hydrodynamic kernel obtained for t
equilibrium fluctuations in the presence of a wall, and t
new nonequilibriumterm
G aw~k' ,d,w↑,w↓!;H k'
2

12h
~3dw↓222w↓3!1O~k'

4 !1••• if k'!1/d

1

4hk'

V~k' ,w↑,w↓! if k'@1/d

~6.4!
ed

ui-
s.

ver
is the hydrodynamic kernel for nonequilibrium fluctuatio
in the presence of the wall@29# ~the expanded form of this
kernel is given in Ref.@45#; see also Ref.@46#!. In the ex-
pressions forG and G aw, the lower cutoff onk' is the in-
verse of the collision lengthLc , which we will calculate
towards the end of this section. The membrane-wall d
tances we use in our calculations are such thatd@w↑,w↓ and
-

hencew↓3 can be neglected in comparison todw↓2. In the
long wavelength limit,G aw depends onw↓ and not on (w↓

2w↑) as in the bulk. When the fluctuations are not affect
by the wall,G aw vanishes whenw↑ equalsw↓ since in bulk,
the directions up and ‘‘down’’ are equivalent. The noneq
librium contribution to the force density therefore vanishe
Thus, in this large membrane-wall distance limit, we reco
4-11
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the previous situation of active membrane fluctuations wh
the asymmetry was crucial for nonzero active force dens
The wall breaks the symmetry in the up and down directio
and hence the hydrodynamic kernel picks out a particu
direction and does not depend on (w↓2w↑) when membrane
fluctuations feel the wall. The statistics for the noisef̃ z in the
presence of the wall follows from Eqs.~4.8!.

The equal time correlation function can be calcula
from

] tS h~k' ,v!

c~k' ,v!
D 52S G~sk'

2 1kk'
4 ! GkH̄k'

2 2G awf

LkH̄k'
4 Lx0

21k'
2 D

3S h~k' ,v!

c~k' ,v!
D 1S f̃ z~k' ,v!

ik'•fc
D . ~6.5!

The correlation function is

^h* ~k'!h~k'!&5kBTG

3S S tc
211th

21w2ta
21w1

f 2G aw2

x0
21G D

~tc
211th

21w!~th
21w,e1ta

21w!
D ,

~6.6!

where

th
21w5G~sk'

2 1kk'
4 !, ta

21w5G aw
kH̄

x0
21

f k'
2 . ~6.7!

th
21w,e has the same form asth

21w
with k replaced byke .

Inserting physically reasonable values for the parame
which enter these definitions~see below!, we verify that the
right-hand side of the correlation function is always positiv
Thus, this correlation function is calculated in a regime
which the active membrane is in astablesteady-state phase

At large length scales and in the presence of a confin
wall (1/Lc!k'!1/d),
qu
de
n
m
o
ur
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^h2~L !&5
kBT

kH̄
Fe8x0

21

e f
1

f e

D G ln~L/a!;
kBT

S
ln~L/a!

~6.8!

for tensionlessmembranes and

^h2~L !&5kBTF e81~ f 2e2/Dx0
21!

e8s1~e f kH̄/x0
21!

G ln~L/a!;
kBT

se
ln~L/a!

~6.9!

for tense membranes. We have defined the quantitiee
5dw↓2/(4h) ande85d3/(12h) for notational convenience
Thus, the presence of the wall makes tensionless ac
membranes less rough than they are in bulk since the he
correlation function scales now logarithmically withL in-
stead of quadratically. Note that this effect isoppositeto that
predicted via the scaling arguments of Prostet al. in Ref.
@29#.

The effective surface tension is then

S5
kH̄

Fe8x0
21

e f
1

f e

D G . ~6.10!

This is an explicitly nonequilibrium effect, sinceS50 when
f 50. The induced surface tension also crucially depends
the curvature-concentration couplingH̄ since it vanishes on
setting this coupling to zero. Therefore, both nonequilibriu
forces and curvature-concentration coupling are essentia
the stiffening of a tensionless, active membrane near a w

To calculate the collision lengthLc we seth2(Lc)'d2 in
Eqs.~6.8! and ~6.9!. Thus

Lc~d!5H a exp~Sd2/kBT! if s50

a exp~sed2/kBT! if sÞ0.
~6.11!

The eigenmodes have frequencies
v1 ,v25
1

2
~Dk'

2 1Gsk'
2 1Gkk'

4 !6
1

2
@A~Dk'

2 1Gsk'
2 1Gkk'

4 !224~ fG awH̄kLk'
4 1GDkek'

6 1GDsk'
4 !#.
l,

um

ear
In the absence of curvature-concentration coupling, none
librium forces have no effect on the modes and the mo
reduce to those of an equilibrium membrane in the prese
of a wall, within the linearized theory. For tensionless me
branes with nonzero curvature-concentration coupling, n
equilibrium effects become apparent in the mode struct
The modes to lowest order are

v1'
fG awkH̄

x0
21

k'
2 1Gkek'

4 ,
i-
s

ce
-
n-
e.

v2'Dk'
2 1

kH̄~kH̄Gk'
2 2 fG aw!

x0
21

k'
2 . ~6.12!

When membrane fluctuations are influenced by the walG
5d3k'

2 /12h andG aw5dw↓2k'
2 /4h to lowest order. Far away

from the wall the modes reduce to those of a nonequilibri
membrane in the bulk.

It may seem that for initially tensionless membranes n
a wall, the induced surface tensionS can have either sign
4-12
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depending on the sign of the curvature-concentration c
pling H̄. We will show that for stability, it is imperative tha
H̄ is positive for active membranes close to walls; a nega
H̄ leads to a negativev1, and thus an instability. The re
quirement of positivity ofH̄ in the stable regime ensures th
our approximations of considering fluctuations at linear or
about an initial flat steady-state phase are self-consisten

We now present a physical argument for why pump
activity should lead to thestiffening of active, tensionless
membranes near repulsive walls. The calculations of Sec
indicate that the eigenvalues governing the relaxation o
tense, equilibrium membrane near a wall aresd3k'

4 /(12h)
and Dk'

2 . For an active, tensionless membrane near a w

these eigenvalues arekH̄ f dw↓2k'
4 /4hx0

21 and Dk'
2 . The

coefficient of the slower mode for the active case@O(k'
4 )#

can be written as (kH̄e f /e8x0
21)d3/(12h) and compared to

the expression for the slowest relaxation mode for ten
equilibrium membranes. This comparison suggests tha
apparent surface tension (kH̄e f /e8x0

21) is induced due to
purely nonequilibrium effects, even for a membrane w
vanishing bare surface tension.

In the linearized theory, the induced surface tension
tained using the above argument and the surface tensioS
obtained from the coefficient of the logarithmic term in t
calculation of the height roughness coincide. It is thus app
ent that the presence of the wall smoothens a tension
active membrane by making it relax faster than its tensi
less equilibrium counterpart@whose slowest mode isO(k'

6 )].
Why does an active membrane relax faster near the w

Height field fluctuations are predominantly governed by
c field @the second term in Eq.~6.3!# because this term is
O(k'

2 ) in contrast to the other terms which are of high
order in wave number. Thus, this equation to lowest orde
wave number is] th5G awf c. Since thec field relaxation is
fast compared to the height field, we may assume that, o
the larger time scales of interest to us in studying the dyn
ics of the height field,c relaxes instantaneously tocs5

2(kH̄/x0
21)k'

2 h. The effective height field equation now
becomes

] th52
f ekH̄

xo
21

k'
4 h. ~6.13!

Note that the coefficient of thek'
4 term in the above equatio

can be rewritten to obtain the induced surface tensionS, as
explained in the previous paragraph.

The above argument invokes and crucially requires
presence of the wall, activity, and curvature-concentrat
coupling. In physical terms, height field fluctuations are
companied by fast relaxation of the protein density fieldc.
This relaxation is to a steady-state value determined by
pump diffusion coefficient and curvature-concentration c
pling. The pumping activity is then inhomogeneously distr
uted along the membrane surface. To see the physical co
quences of this inhomogeneous distribution, conside
fluctuation creating a region of positive curvature. IfH̄ is
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positive, the number of up pumps in the region of positi
curvature tends to decrease with time and the decrease i
pumping activity causes a smoothening of the membra
However, if H̄ is negative, the region of positive curvatu
attracts more up pumps, which further bootstraps the he
fluctuation, leading to an instability.

The explicit expressions obtained above also permit u
estimate the collision length for tensionless acti
membranes in the presence of repulsive walls. Us
estimates given in Ref.@28# for various physical quantities
(k510220 J, H̄55 nm, f 510212 N, d51 mm, x0

21510221

J m2), we find that the induced surface tensionS
;1027–1028 N/m. This translates to collision lengthsLc of
the order of 105–106 times molecular scales. Assuming m
lecular length scales of the order of 1 nm, this calculat
would then predict collision lengths of the order of millime
ters, for membranes with physical parameters in the ab
range.

VII. CONCLUSIONS

This paper has presented a calculation of the lineari
hydrodynamics of two-component membranes including
effects of curvature-concentration coupling, specifically
the context of a simple model for a biological membra
with protein and lipid constituents. We have studied in so
detail the case in which such membranes are placed clos
as well as far away from a confining repulsive wall. We ha
considered the case in which such proteins are ‘‘active,’
which case they exert nonequilibrium forces on the solve
as well as the case of ‘‘inactive’’ pumps, corresponding
thermal equilibrium.

The calculations we report are for a model that sha
many similarities with that of Ref.@28#. Manneville et al.
consider the more general case of a membrane with a fi
permeability whereas we work with an impermeable me
brane throughout. In addition, we neglect the possible effe
of curvature on activity. However, the relatively simpl
structure of our model enables us to establish a connec
with equilibrium results in a more transparent fashion. W
work in a framework in which boundary conditions are e
plicitly implemented. This is especially of use when we co
sider the linearized theory of fluctuations of an active me
brane near a wall. To the best of our knowledge, the res
we report for the linearized hydrodynamics of active a
inactive two-component membranes near walls are new
are our results for the equilibrium case far away from co
fining walls.

We find, far away from the walls and consistent with t
results of Mannevilleet al. @28#, that the presence of activ
pumps on the membrane does not change its roughnes
the case of tensionless membranes, fluctuations can be
scribed in terms of an effective temperature, which is shif
from the thermodynamic temperature by nonequilibrium
fects due to pumping. These terms depend on the qua
(w↓2w↑), a measure of the degree of asymmetry in t
positions of the force centers. We reiterate the observatio
Mannevilleet al. in Ref. @28# that this asymmetry is essentia
4-13
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for nonequilibrium effects to be visible in the membrane d
namics.

We find that the activity of the pumps within thestable
regime appears tosmoothenout height fluctuations in the
presence of the wall since height correlations scale o
logarithmically with L for both tense and tensionless mem
branes. This smoothening out within the linear theory p
sumably competes with the possible enhancement of fluc
tions, if any, which might arise in a theory that incorpora
the effects of nonlinearities. We have provided a physi
interpretation of this effect in this paper and obtained e
mates for the appropriate collision length. We find that t
collision length can be significantly larger than typical leng
scales for biological vesicles, indicating the relevance of
physical effects we study here to a complete description
the hydrodynamics of active pump-membrane systems.
important to note that this smoothening relies crucially
the existence of curvature-concentration coupling terms,
glected in previous work on the near-wall case. These res
suggest that earlier ones based on scaling arguments w
predicted anenhancementin the roughness may need to b
reevaluated in the light of this work.

We have also calculated the crossover functionG aw and
linearized mode structure in the presence of the wall. Wh
the positional asymmetry in the placement of force cen
was crucial for active membrane fluctuations in bulk, w
point out that nonequilibrium effects are apparent even
symmetrically placed pumps in the presence of a wall. T
unusual, although not totally unexpected, result does not
pear to have been noticed before.

We also find that the requirement of stability for acti
membranes near a wall constrainsH̄, the coefficient cou-
pling concentration with curvature, to be positive. This c
have interesting consequences. Consider two active m
branes, one with positiveH̄ and the other with negativeH̄,
fluctuating in the bulk. ProvidedH̄P for each lies in the
window of stability in the bulk, these membranes are sta
Now bring both close to a wall. The membrane with positi
H̄ will remain stable. The fluctuations of the membrane w
negativeH̄, however, will turn unstable; its final fate will b
decided by the nonlinear terms we have omitted from
discussion.

Because our calculation is an explicitlylinear one, we
cannot address issues such as the relevance of such non
terms. The arguments of Prost, Manneville, and Bruins
which predict an anomalous roughening of active me
branes near walls, rely on identifying the role of such no
linear terms and estimations of their importance via sca
arguments. It would be interesting to construct similar ar
ments for the model studied here, particularly since our
sults in the linear case indicate that fluctuations of an ac
membrane near a repulsive wall can besmoothenedin some
regimes, rather than roughened relative to the equilibri
case. Further work along these lines is currently in progr

ACKNOWLEDGMENTS

We are grateful to Sriram Ramaswamy for a critical rea
ing of the manuscript as well as several enlightening disc
03191
-

ly

-
a-
s
l

i-
s

e
f

is

e-
lts
ich

e
rs

r
is
p-

m-

.

r

ear
a,
-
-
g
-
-
e

s.

-
s-

sions on these and related matters. We also thank Y. H
walne for urging us to clarify the physical mechanism
underlying our results.

APPENDIX

1. A note on the impermeability of the membrane

In this section we present an argument, following Ma
neville et al., to justify the assumption of membrane impe
meability. Had we incorporated permeation due to activity
our calculations, active-permeative and active-hydrodyna
terms would appear as@lp2k'(w↑22w↓2)/8h# f c (lp is
the permeation coefficient! @28#. The crossover length scal
from the hydrodynamic to the permeative regime occ
when k'58hlp /w(w↑2w↓), i.e., l'5pw(w↑2w↓)/4hlp
(w is the size of the pump!. With lp510212 m3/N s, h
51023 kg/m s, and w5531029 m @28#, this crossover
length scale is estimated to be of the order of 1 cm. T
length scales of concern to us are in the micron and sub
cron range@28#. Thus, at these length scales, effects due
permeation can be ignored. These arguments can be exte
to estimating the role of passive permeative vs hydro
namic modes of relaxation; we conclude that at the len
scales of interest to us, the assumption of membrane im
meability remains valid.

In the presence of a wall, active-permeative terms wo
dominate iflp.G aw. This means that the length scale abo
which permeation dominates isApdw↓2/2hlp. This length
is '40 mm when the membrane-wall distanced51 mm.
Hence, in the regimes of interest to us, permeation can
ignored and relaxation is purely hydrodynamic. Hence,
assumelp50 to derive our results.

2. A modified model for active membranes

We present here results for a model in which proteins
located asymmetrically across the bilayer with their cent
of mass displaced above or below the bilayer midpoint~see
Fig. 3!. The head and tail of the pumps are then located
distanceswl andws , respectively, from the midpoint of the
bilayer. Note that in this model, the up and down pumps
related to each other by reflection along thez50 line unlike
the model of Fig. 2. This model can be used to descr
situations in which proteins are attached to planar bila
membranes which are symmetric on both sides, un
vesicles in which the inner leaf and outer leaf need not
symmetrically preferred by the protein.

When pumps are active on such a membrane in bulk,
force density due to the pumps acting on the fluid has
form

f pump-f luid5 f @d~z2wl !n
↑2d~z1ws!n

↑2d~z1wl !n
↓

1d~z2ws!n
↓#, ~A1!

where n↑ and n↓ are the local number of up and dow
pumps, respectively. On repeating the calculations done
Sec. V, we find that thez component of the hydrodynami
velocity has the same form as shown in Eq.~5.7! with
V(k' ,w↑,w↓) replaced by V8(k' ,wl ,ws)52ek'ws(1
4-14
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1k'ws)1ek'wl(11k'wl), which vanishes whenwl5ws ~i.e.,
for symmetrically placed proteins!. Correlation functions and
relaxation times can be read off from the corresponding
pressions in Sec. V by identifyingw↓ and w↑ with ws and
wl , respectively. For example,

^h* ~k' ,t !h~k' ,t !&

5
kBT

4hk'

S S tc
211th

212ta
211

f 2V2

4hk'x0
21D

~tc
211th

21!~th
21e1ta

21!
D ,

~A2!

where the quantitiestc
21 ,th

21 have been defined earlier.th
21e

has the same form asth
21 with k replaced byke . The relax-

ation time
.

i.

e

es

r-

Int

. E

ev

03191
-
ta

215
1

4hk'

kH̄

x0
21

f V~k' ,wl ,ws!k'
2 . ~A3!

We note here that this identification is purely notational sin
(w↓,w↑) and (ws ,wl) physically represent different length
in the two models.

When the calculations are repeated for such a mode
the presence of a repulsive wall, we find that the hydro
namic velocity acquires an additional contribution from t
f ~total protein density! field. In this linearized calculation
we assume that the compressibility associated with thef
field is very large and ignore its dynamics. However, we
not expect this contribution to alter the long wavelength flu
tuations of the active membrane near the wall significant
.
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